
20

PLANC: Parallel Low-rank Approximation with

Nonnegativity Constraints

SRINIVAS ESWAR and KOBY HAYASHI, Georgia Institute of Technology

GREY BALLARD, Wake Forest University

RAMAKRISHNAN KANNAN and MICHAEL A. MATHESON, Oak Ridge National Laboratory

HAESUN PARK, Georgia Institute of Technology

We consider the problem of low-rank approximation of massive dense nonnegative tensor data, for ex-

ample, to discover latent patterns in video and imaging applications. As the size of data sets grows, sin-

gle workstations are hitting bottlenecks in both computation time and available memory. We propose a

distributed-memory parallel computing solution to handle massive data sets, loading the input data across the

memories of multiple nodes, and performing efficient and scalable parallel algorithms to compute the low-

rank approximation. We present a software package called Parallel Low-rank Approximation with Non-

negativity Constraints, which implements our solution and allows for extension in terms of data (dense or

sparse, matrices or tensors of any order), algorithm (e.g., from multiplicative updating techniques to alternat-

ing direction method of multipliers), and architecture (we exploit GPUs to accelerate the computation in this

work). We describe our parallel distributions and algorithms, which are careful to avoid unnecessary commu-

nication and computation, show how to extend the software to include new algorithms and/or constraints,

and report efficiency and scalability results for both synthetic and real-world data sets.

Eswar and Hayashi share first authorship.

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department

of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges

that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce

the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department

of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public

Access Plan (http://energy.gov/downloads/doe-public-access-plan).

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Depart-

ment of Energy (DOE). This project was partially funded by the Laboratory Director’s Research and Development fund.

This material is based upon work supported by the National Science Foundation (NSF) under Grants No. OAC-1642385

and No. OAC-1642410. Koby Hayashi acknowledges support from the United States Department of Energy through the

Computational Sciences Graduate Fellowship (DOE CSGF) under Grant No. DE-SC0020347.

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Labora-

tory, which is supported by the DOE Office of Science (SC). This research used resources of the National Energy

Research Scientific Computing Center, a SC User Facility supported by the SC under Contract No. DE-AC02-05CH11231.

The United States Government retains and the publisher, by accepting the article for publication, acknowledges that

the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce

the published form of this manuscript, or allow others to do so, for United States Government purposes. The DOE

will provide public access to these results of federally sponsored research in accordance with the DOE Public Access

Plan (http://energy.gov/downloads/doe-public-access-plan). Any opinions, findings, conclusions, or recommendations ex-

pressed in this material are those of the authors and do not necessarily reflect the views of NSF or DOE.

Authors’ addresses: S. Eswar, K. Hayashi, and H. Park, Dept. of CSE, Georgia Institute of Technology, Atlanta, GA 30308;

emails: {seswar3, khayashi9, hpark}@gatech.edu; G. Ballard, Dept. of CS, Wake Forest University, Winston-Salem, NC

27109; email: ballard@wfu.edu; R. Kannan and M. A. Matheson, Oak Ridge National Laboratory, Oak Ridge, TN 37831;

emails: {kannanr, mathesonma}@ornl.gov.

ACM acknowledges that this contribution was authored or co-authored by an employee, contractor, or affiliate of the

United States government. As such, the United States government retains a nonexclusive, royalty-free right to publish or

reproduce this article, or to allow others to do so, for government purposes only.

© 2021 Association for Computing Machinery.

0098-3500/2021/06-ART20 $15.00

https://doi.org/10.1145/3432185

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1145/3432185


20:2 S. Eswar et al.

CCS Concepts: • Theory of computation → Massively parallel algorithms; • Software and its engi-

neering → Software libraries and repositories;

Additional Key Words and Phrases: Tensor factorization, nonnegative least squares, communication-avoiding

algorithms

ACM Reference format:

Srinivas Eswar, Koby Hayashi, Grey Ballard, Ramakrishnan Kannan, Michael A. Matheson, and Haesun Park.

2021. PLANC: Parallel Low-rank Approximation with Nonnegativity Constraints. ACM Trans. Math. Softw.

47, 3, Article 20 (June 2021), 37 pages.

https://doi.org/10.1145/3432185

1 INTRODUCTION

The CP decomposition [11, 23], which is also known as CANDECOMP, PARAFAC, and canonical
polyadic decomposition, approximates a tensor, or multidimensional array, by a sum of rank-one
tensors. CP is typically used to identify latent factors in data, particularly when the goal is to in-
terpret those hidden patterns, and it is popular within the signal processing, machine learning,
and scientific computing communities, among others [1, 21, 38, 56]. Enforcing domain-specific
constraints on the computed factors can help to identify interpretable components. We focus in
this article on nonnegative dense tensors (when all tensor entries are nonnegative and nearly
all of them are positive) and on constraining solutions to have nonnegative entries. Formally,
Nonnegative CP (NCP)1 can be defined as

min
H(i )�0

������X −
R∑

r=1

H(1) (:, r ) ◦ · · · ◦ H(N ) (:, r )
������

2

(1)

for a fixed R, where H(1) (:, i ) ◦ · · · ◦ H(N ) (:, i ) is the outer product of the ith vector from all the N
factors that yields a rank-one tensor and

∑R
r=1 H(1) (:, r ) ◦ · · · ◦ H(N ) (:, r ) results in a sum of R rank-

one tensors that approximate the N th order nonnegative input tensor X. For example, in imaging
and microscopy applications, tensor values often correspond to intensities, and NCP can be used
to cluster and analyze the data in a lower-dimensional space [27]. In this work, we consider a brain
imaging data set that tracks calcium fluorescence within pixels of a mouse’s brain over time during
a series of experimental trials [37].

The kernel computations within standard algorithms for computing NCP can be formulated as
matrix computations, but the complicated layout of tensors in memory prevents the straightfor-
ward use of BLAS and LAPACK libraries. In particular, the matrix formulation of subcomputations
involve different views of the tensor data, so no single layout yields a column- or row-major matrix
layout for all subcomputations. Likewise, the parallelization approach for tensor methods is not a
straightforward application of parallel matrix computation algorithms.

In developing an efficient parallel algorithm for computing a NCP of a dense tensor, the key is
to parallelize the bottleneck computation known as Matricized-Tensor Times Khatri-Rao Product
(MTTKRP) [2], and a different result is required for each mode of the tensor. The MTTKRP for
mode n, for 1 � n � N , is defined as

M(n) = X(n)

(
H(N ) � · · · � H(n+1) � H(n−1) � · · · � H(1)

)
,

where X(n) is a matricization or flattening of the tensor with respect to mode n and � is the Khatri-
Rao product, or column-wise Kronecker product [2, 38]. The parallelization must load balance the
computation, minimize communication across processors, and distribute the results so that the

1In this article, we use NCP and Nonnegative Tensor Factorization (NTF) interchangeably.

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.

https://doi.org/10.1145/3432185


PLANC: Parallel Low-rank Approximation with Nonnegativity Constraints 20:3

rest of the computation can be performed independently. In our algorithm, not only do we load
balance the computation, but we also compute and store temporary values that can be used across
MTTKRPs of different modes using a technique known as dimension trees, significantly reducing
the computational cost compared to standard approaches. Our parallelization strategy also avoids
communicating tensor entries and minimizes the communication of factor matrix entries, helping
the algorithm to remain computation bound and scalable to high processor counts.

We employ a variety of algorithmic strategies to computing NCP, from multiplicative updates to
alternating direction method of multipliers. Because the bottleneck computations such as MTTKRP
are shared by all update algorithms that compute gradient information, we separate the paralleliza-
tion strategy for those computations from the (usually local) computations that are unique to each
algorithm. In this article, we present an open-source software package called Parallel Low-rank

Approximation with Nonnegativity Constraints (PLANC) that currently includes six algo-
rithmic options, and we describe how other algorithms can be incorporated into the framework.
PLANC can also be used for nonnegative matrix factorization (NMF) with dense or sparse
matrices. The software is available at https://github.com/ramkikannan/planc.

An earlier version of this work appeared as a conference paper [3], which presents the par-
allelization strategy described in Section 4.1 and the dimension tree optimization detailed in
Section 4.2. We summarize the further contributions of this article as follows:

• presentation and description of the open-source PLANC software package,
• utilization of GPUs to alleviate the MTTKRP bottleneck achieving up to 7× speedup over

CPU-only execution,
• scaling results for runs from 1 to 16,384 nodes (250,000+ cores) on the Titan supercomputer,
• side by side run-time and convergence results for various update algorithms,
• and new results obtained by applying our code to a mouse brain imaging data set.

2 PRELIMINARIES

2.1 Notation

Tensors will be denoted using Euler script (e.g., T), matrices will be denoted with uppercase bold-
face (e.g., M), vectors will be denoted with lowercase boldface (e.g., v), and scalars will not be
boldface (e.g., s). We use Matlab style notation to index into tensors, matrices, and vectors, and we
use 1-indexing. For example, M(:, c ) gives the cth column of the matrix M.

We use ◦ to denote the outer product of two or more vectors. The Hadamard product is the
element-wise matrix product and will be denoted using ∗. The Khatri-Rao product, abbreviated
KRP, will be denoted with �. Given matrices A and B that are IA × R and IB × R, the KRP K = A � B

is IAIB × R. It can be thought of as a row-wise Hadamard product, where K(i + IA (j−1), :) =
A(i, :) ∗ B(j, :), or a column-wise Kronecker product, where K(:, c ) = A(:, c ) ⊗ B(:, c ).

The CP decomposition of a tensor (also referred to as the CANDECOMP/PARAFAC or canonical
polyadic decomposition) is a low-rank approximation of a tensor, where the approximation is a
sum of rank-one tensors and each rank-one tensor is the outer product of vectors. We use the
notation

X ≈ �H(1), . . . ,H(N )� =
R∑

r=1

H(1) (:, r ) ◦ · · · ◦ H(N ) (:, r )

to represent a rank-R CP model, where H(n) is called a factor matrix and collects the mode-n vectors
of the rank-one tensors as columns. The columns of the factor matrices are often normalized,
with weights collected into an auxiliary vector λ of length R; in this case, we use the notation

�λ; H(1), . . . ,H(N )�.

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.

https://github.com/ramkikannan/planc


20:4 S. Eswar et al.

Fig. 1. CP Decomposition.

An NCP constrains the factor matrices to have nonnegative values. In this work, we are inter-
ested in NCP models that are good approximations to X in the least-squares sense. That is, we
seek

min
H(i )�0

‖X − �λ; H(1), . . . ,H(N )�‖,

where the tensor norm is a generalization of the matrix Frobenius or vector 2-norm, the square
root of the sum of squares of the entries. Here X is a tensor with dimensions I1 × ... × IN . We
denote the product of its dimensions by I , that is I =

∏
In .

The nth mode matricized tensor denoted by X(n) is a In × I/In matrix formed by organizing
the nth mode fibers of X into the columns of a matrix. The Matricized-Tensor Times Khatri-Rao
Product or MTTKRP will be central to this work and takes the form M(n) = X(n)K

(n) , where K(n) =

H(N ) � · · · � H(n+1) � H(n−1) � · · · � H(1) .

2.2 Nonnegative CP and Alternating-Updating Methods

The CP decomposition is a low-rank approximation of a multi-dimensional array, or tensor, which
generalizes matrix approximations like the truncated singular value decomposition. As in Figure 1,
CP decomposition approximates the given input matrix as sum of R rank-1 tensors.

Algorithm 1 shows the pseudocode for an alternating-updating algorithm applied to NCP [35].
Lines 11, 12, and 14 compute matrices involved in the gradients of the subproblem objective func-
tions, and Line 13 uses those matrices to update the current factor matrix.

The nonnegative least-squares (NLS)-Update in Line 13 can be implemented in different
ways. In a faithful Block Coordinate Descent (BCD) algorithm, the subproblems are solved
exactly; in this case, the subproblem is a nonnegative linear least-squares problem, which is con-
vex. We can use the Block Principal Pivoting (BPP) method [35, 36], which is an active-set-like
method, to solve the subproblem exactly.

However, as discussed by Kannan et al. [29] for the matrix case, there are other reasonable alter-
natives to updating the factor matrix without solving the N -block coordinate descent subproblem
exactly. For example, we can more efficiently update individual columns of the factor matrix as
is done in the Hierarchical Alternating Least Squares (HALS) method [14]. In this case, the
update rule is

H(n) (:, r ) ←
[
H(n) (:, r ) +M(n) (:, r ) − (H(n)S(n) ) (:, r )

]
+
,

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



PLANC: Parallel Low-rank Approximation with Nonnegativity Constraints 20:5

ALGORITHM 1: �H(1), . . . ,H(N )� = NCP(X,R)

Require: X is I1 × · · · × IN tensor, R is approximation rank
1: % Initialize data

2: for n = 2 to N do

3: Initialize H(n)

4: G(n) = H(n)TH(n)

5: end for

6: % Compute NCP approximation

7: while stopping criteria not satisfied do

8: % Perform outer iteration

9: for n = 1 to N do

10: % Compute new factor matrix in nth mode

11: M(n) = MTTKRP(X, {H(1), . . . ,H(n−1),H(n+1), . . . ,H(N ) },n)
12: S(n) = G(1) ∗ · · · ∗ G(n−1) ∗ G(n+1) ∗ · · · ∗ G(N )

13: H(n) = NLS-Update(S(n),M(n) )
14: G(n) = H(n)TH(n)

15: end for

16: end while

Ensure: X ≈ �H(1), . . . ,H(N )�

which involves the same matrices M(n) and S(n) as BPP. Other possible alternating-updating meth-
ods include Alternating-Optimization Alternating Direction Method of Multipliers (AO-

ADMM) [25, 58] and Nesterov-based algorithms [43]. The details of each of these algorithms are
presented in Section 4.3. The parallel algorithm presented in this article is generally agnostic to
the approach used to solve the nonnegative least squares subproblems, as all these methods are
bottlenecked by the subroutine they have in common, the MTTKRP.

2.3 Parallel Communication Model

To analyze our algorithms, we use the α-β-γ model of distributed-memory parallel computation.
In this model, interprocessor communication occurs in the form of messages sent between two
processors across a bidirectional link (we assume a fully connected network). We model the cost
of a message of size n words as α + nβ , where α is the per-message latency cost and β is the per-
word bandwidth cost. Each processor can compute floating point operations (flops) on data that
resides in its local memory; γ is the per-flop computation cost. With this communication model,
we can predict the performance of an algorithm in terms of the number of flops it performs as
well as the number of words and messages it communicates. For simplicity, we will ignore the
possibilities of overlapping computation with communication in our analysis. For more details on
the α-β-γ model, see the articles by Thakur et el. [63] and Chan et al. [12].

2.4 MPI Collectives

Point-to-point messages can be organized into collective communication operations that involve
more than two processors. MPI provides an interface to the most commonly used collectives like
broadcast, reduce, and gather, as the algorithms for these collectives can be optimized for partic-
ular network topologies and processor characteristics. Chan et al. [12, Figure 1] provide a concise
description of the most common collectives. The algorithms we consider use the all-gather, reduce-
scatter, and all-reduce collectives, so we review them here, along with their costs. Our analysis

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



20:6 S. Eswar et al.

assumes optimal collective algorithms are used [12, 63], though our implementation relies on the
underlying MPI implementation.

At the start of an all-gather collective, each of p processors owns data of size n/p. After the
all-gather, each processor owns a copy of the entire data of size n. The cost of an all-gather is

α · logp + β · p−1
p
n. At the start of a reduce-scatter collective, each processor owns data of size n.

After the reduce-scatter, each processor owns a subset of the sum over all data, which is of size
n/p. This single collective is a more efficient way of implementing a reduce followed by a scatter.
(Note that the reduction can be computed with other associative operators besides addition.) The

cost of an reduce-scatter is α · logp + (β + γ ) · p−1
p
n. At the start of an all-reduce collective, each

processor owns data of size n. After the all-reduce, each processor owns a copy of the sum over all

data, which is also of size n. The cost of an all-reduce is 2α · logp + (2β + γ ) · p−1
p
n. Note that the

costs of each of the collectives are zero when p = 1.

3 RELATED WORK

The formulation of NCP with least squares error and algorithms for computing it go back as far
as the 1990s [50, 68], developed in part as a generalization of nonnegative matrix factorization
algorithms [40] to tensors. Sidiropoulos et al. [56] provide a more detailed and complete survey
that includes basic tensor factorization models with and without constraints, broad coverage of
algorithms, and recent driving applications. The mathematical tensor operations discussed and
the notation used in this article follow Kolda and Bader’s survey [38].

Many numerical methods have been developed for the NLS subproblems that arise in NLS.
Broadly these methods can be divided into projection-based and active-set-based methods.
Projection-based methods are iterative methods that consist of gradient descent and Newton-type
algorithms that exploit the fact that the objective function is differentiable and the nonnegative
projection operator is easy to compute [15, 22, 34, 44, 47]. Active-set-like methods explicitly parti-
tion the variables into zeros and non-zeros. Once the final partition is known the NLS problem can
be solved via a simpler unconstrained least-squares problem [10, 36, 39, 65]. We direct the reader
to the survey by Kim et al. [35] for a more in-depth discussion on these methods.

Recently, there has been growing interest in scaling tensor operations to bigger data and more
processors in both the data mining/machine learning and the high performance computing com-
munities. For sparse tensors, there have been parallelization efforts to compute CP decompositions
on shared-memory platforms [41, 60], distributed-memory platforms [32, 33, 59], and GPUs [48,
49, 62], and these approaches can be generalized to constrained problems [58].

Liavas et al. [42] extend a parallel algorithm designed for sparse tensors [59] to the 3D dense
case. They use the “medium-grained” dense tensor distribution and row-wise factor matrix dis-
tribution, which is exactly the same as our distribution strategy (see Section 4.1.2), and they use
a Nesterov-based algorithm to enforce the nonnegativity constraints. A similar data distribution
and parallel algorithm for computing a single dense MTTKRP computation is proposed by Ballard,
Knight, and Rouse [4]. Another approach to parallelizing NCP decomposition of dense tensors is
presented by Phan and Cichocki [52], but they use a dynamic tensor factorization, which performs
different, more independent computations across processors. Moon et al. [48] address the data lo-
cality optimizations needed during the NLS phase of the algorithm for both shared memory and
GPU systems. Ma and Solomonik [45] and Singh et al. [57] compute unconstrained CP decomposi-
tions using the Cyclops Tensor Framework [61] as a backend for parallel dense tensor contractions.
The former uses a pairwise perturbation technique to approximate MTTKRP computations within
ALS, and the latter applies a direct optimization technique based on Gauss-Newton.

The idea of using dimension trees (discussed in Section 4.2) to avoid recomputation within MT-
TKRPs across modes is introduced in Reference [53] for computing the CP decomposition of dense

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



PLANC: Parallel Low-rank Approximation with Nonnegativity Constraints 20:7

tensors. General reuse patterns and mode splitting were present in earlier works on variants of the
Tucker Decomposition [6, 20]. It has also been used for sparse CP [33, 41] and sparse Tucker [32].

An alternate approach to speeding up CP computations is by reducing the tensor size either via
sampling or compression. A large body of work exists for randomized tensor methods [7, 16, 51,
67], which are recently being extended to the constrained problem [17, 19]. The approach to reduce
the tensor size is to first compress the tensor using a different decomposition, like Tucker, and then
compute CP on this reduced array. This method has been discussed in further detail by Bro and De
Jong [9] and Thomasi and Bro [64], but it becomes more difficult to impose nonnegative constraints
on the overall model. A separate approach is to compute the (constrained) CP decomposition of
the entire approximation, rather than only the core tensor, exploiting the structure of the Tucker
model to perform the optimization algorithm more efficiently [66].

4 ALGORITHMS

4.1 Parallel NCP Algorithm

ALGORITHM 2: �H(1), . . . ,H(N )� = Par-NCP(X,R)

Require: X is an I1 × · · · × IN tensor distributed across a P1 × · · · × PN grid of P processors, so
that Xp is (I1/P1) × · · · × (IN /PN ) and is owned by processor p = (p1, . . . ,pN ), R is rank of
approximation

1: for n = 2 to N do

2: Initialize H
(n)
p of dimensions (In/P ) × R

3: G = Local-SYRK(H(n)
p )

4: G(n) = All-Reduce(G,All-Procs)

5: H
(n)
pn
= All-Gather(H(n)

p , Proc-Slice(n,pn ))
6: end for

7: % Compute NCP approximation

8: while not converged do

9: % Perform outer iteration

10: for n = 1 to N do

11: % Compute new factor matrix in nth mode

12: M = Local-MTTKRP(Xp, {H(1)
p1
, . . . ,H

(n−1)
pn−1
,H

(n+1)
pn+1
, . . . ,H

(N )
pN
},n)

13: M
(n)
p = Reduce-Scatter(M, Proc-Slice(n,pn ))

14: S(n) = G(1) ∗ · · · ∗ G(n−1) ∗ G(n+1) ∗ · · · ∗ G(N )

15: H
(n)
p = NLS-Update(S(n),M

(n)
p )

16: % Organize data for later modes

17: G = H
(n)
p

T
H

(n)
p

18: G(n) = All-Reduce(G,All-Procs)

19: H
(n)
pn
= All-Gather(H(n)

p , Proc-Slice(n,pn ))
20: end for

21: end while

Ensure: X ≈ �H(1), . . . ,H(N )�
Ensure: Local matrices: H

(n)
p is (In/P ) × R and owned by processor p = (p1, . . . ,pN ), for 1 � n �

N , λ stored redundantly on every processor

4.1.1 Algorithm Overview. The basic sequential algorithm is given in Algorithm 1, and the par-
allel version is given in Algorithm 2. In Algorithm 2, we will refer to both the inner iteration,

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



20:8 S. Eswar et al.

in which one factor matrix is updated (Lines 10–20), and the outer iteration, in which all factor
matrices are updated (Lines 8–21). In the parallel algorithm, the processors are organized into a
logical multidimensional grid (tensor) with as many modes as the data tensor. The communication
patterns used in the algorithm are MPI collectives: All-Reduce, Reduce-Scatter, and All-Gather.
The processor communicators (across which the collectives are performed) include the set of all
processors and the sets of processors within the same processor slice. Processors within a mode-n
slice all have the same nth coordinate. Each processor is part of N different Proc-Slice communi-
cators, which we denote by Proc-Slice(n,pn ), where n refers to the mode and pn refers to the nth
processor coordinate (i.e., the pnth processor slice in mode n).

The method of enforcing the nonnegativity constraints of the linear least-squares solve or up-
date generally affects only local computation, because each row of a factor matrix can be updated
independently. In our algorithm, each processor solves the linear problem or computes the update
for its subset of rows (see Line 15). The most expensive (and most complicated) part of the parallel
algorithm is the computation of the MTTKRP, which corresponds to Lines 12, 13, and 19.

The details that are omitted from this presentation of the algorithm include the normalization
of each factor matrix after it is computed and the computation of the residual error at the end of an
outer iteration. These two computations do involve both local computation and communication,
but their costs are negligible. We discuss normalization and error computation and give more
detailed pseudocode in Algorithm 4 (Appendix B).

4.1.2 Data Distribution. Given a logical processor grid of processors P1 × · · · × PN , we distrib-
ute the size I1 × · · · × IN tensor X in a block or Cartesian partition. Each processor owns a local
tensor of dimensions (I1/P1) × · · · × (IN /PN ), and only one copy of the tensor is stored. Locally,
the tensor is stored linearly, with entries ordered in a natural mode-descending way that gener-
alizes column-major layout of matrices. Given a processor p = (p1, . . . ,pN ), we denote its local
tensor Xp.

Each factor matrix is distributed across processors in a block row partition, so that each pro-

cessor owns a subset of the rows. We use the notation H
(n)
p , which has dimensions In/P × R, to

denote the local part of the nth factor matrix stored on processor p. However, we also make use
of a redundant distribution of the factor matrices across processors, because all processors in a

mode-n processor slice need access to the same entries of H(n) to perform their computations. The

notation H
(n)
pn

denotes the In/Pn × R submatrix of H(n) that is redundantly stored on all processors

whose nth coordinate is pn (there are P/Pn such processors).

Other matrices involved in the algorithm include M
(n)
p , which is the result of the MTTKRP

computation and has the same distribution scheme as H
(n)
p , and G(n) , which is the R × R Gram

matrix of the factor matrix H(n) and is stored redundantly on all processors.

4.1.3 Inner Iteration. The inner iteration is displayed graphically in Figure 2 for a three-way
example and an update of the second factor matrix. The main idea is that at the start of the nth
inner iteration (Figure 2(a)), all of the data is in place for each processor to perform a local MT-
TKRP computation, which can be computed using a dimension tree as described in Section 4.2.
This means that all processors in a slice redundantly own the same rows of the corresponding
factor matrix (for all modes except n). After the local MTTKRP is computed (Figure 2(b)), each

processor has computed a contribution to a subset of the rows of the global MTTKRP M(n) , but
its contribution must be summed up with the contributions of all other processors in its mode-n
slice (denoted Proc-Slice(n,pn ) in Line 13 of Algorithm 2). This summation is performed with a
Reduce-Scatter collective across the mode-n processor slice that achieves a row-wise partition of

the result (in Figure 2(c), the light gray shading corresponds to the rows of M(2) to which processor

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



PLANC: Parallel Low-rank Approximation with Nonnegativity Constraints 20:9

Fig. 2. Illustration of second inner iteration of Par-NCP algorithm for three-way tensor on a 3 × 3 × 3 pro-
cessor grid, showing data distribution, communication, and computation across steps. Highlighted areas
correspond to processor (1, 3, 1) and its processor slice with which it communicates. The column normaliza-

tion and computation of G(2) , which involve communication across all processors, is not shown here.

Table 1. Costs per Outer Iteration (While Loop of Algorithm 2) and per Processor in
Terms of Computation (Flops), Communication (Words Moved), and Memory (Words)

Required to Compute S(n) and M(n) for Each n, Assuming the Local MTTKRP Uses a
Dimension Tree [3]

Computation Communication Temporary Memory

O
(

R
P

∏
n In +

R2

P

∑
n In
)

O �
�R
∑

n

In
Pn

�
� O �	

�R
�
�
∏

n

In
Pn

�
�

1/2

+ R
∑

n

In
Pn

�

�

These costs do not include the computation (and possibly communication) costs of the particular NLS

algorithm.

(1, 3, 1) contributes and the dark gray shading corresponds to the rows it receives as output). The
output distribution of the Reduce-Scatter is designed so that afterwards, the update of the factor

matrix in that mode can be performed row-wise in parallel. S(n) can be computed locally, since

the Gram matrices, G(n) , are stored redundantly on all processors. Along with S(n) each processor
updates its own rows of the factor matrix given its rows of the MTTKRP result (Figure 2(d)). The
remainder of the inner iteration is preparing and distributing the new factor matrix data for future

inner iterations, which includes an All-Gather of the newly computed factor matrix H(n) across

mode-n processor slices (Figure 2(e)) and recomputing G(n) = H(n)T
H(n) .

4.1.4 Analysis. We will analyze the cost of a single outer iteration. While the number of outer
iterations is sensitive to the NLS method used, the outer iteration time is generally the same
across methods. We summarize the analysis in Table 1, which provides the dominant computation,

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



20:10 S. Eswar et al.

communication, and memory costs of a single outer-iteration: computing S(n) and M(n) for each n
that is common to all NLS algorithms.

Computation. The local computation occurs at Lines 12, 14, 15, and 17. The cost of Line 14 is
O (NR2), the cost of Line 15 is O (R3In/P ), which is a loose upper bound for most methods (see
Section 4.3), and the cost of Line 17 is O (R (In/P )2). The sum of these three costs across all inner
iterations isO (R2N 2 + (R3/P )

∑
In + (R/P2)

∑
I 2
n ), which is dominated by the cost of the MTTKRP.

We compute the cost to perform the MTTKRPs using dimension trees amortized over all inner
iterations. The dimension tree optimization is explained in detail in Section 4.2. The outer iteration
cost is dominated by the two partial MTTKRP computations (from the root of the tree), which
together are O ((R/P )

∏
In ) = O (IR/P ) and dominate the costs of the multi-TTVs. We note that

this cost involves the product of all the tensor dimensions, which is why it dominates, and we
note that it scales linearly with P .

Communication. The communication within the inner iteration occurs at Lines 13, 18, and
19. Line 18 involves O (R2) data and a collective across all processors. Lines 13 and 19 involve
O (InR/Pn ) data across a subset of P/Pn processors. Thus, the All-Reduce dominates the latency
cost and the Reduce-Scatter/All-Gather dominate the bandwidth cost. Using efficient algorithms
for the collectives (Section 2.4), the total outer iteration communication cost isO (R

∑
In/Pn ) words

and O (N log P ) messages.
If P is large enough, then the bandwidth cost can achieve a value ofO (NRI 1/N /P1/N ) by making

the local tensors as cubical (all local tensor dimensions are roughly the same), which is communi-
cation optimal [4]. If P is not large enough (or if the tensor dimensions are too skewed) to obtain
perfectly cubical tensors, then choosing the processor grid so that local tensors are as cubical as
possible is also communication optimal [5] (in this case some of the processor grid dimensions will
be 1). We note that the cost in the case of large P scales with P1/N , which is far from linear scaling.
However, it is proportional to the geometric mean of the tensor dimensions (on the order of one
tensor dimension), which is much less than the computation cost dependence on the product of all
dimensions. We report the cost for an arbitrary processor grid in Table 1, because the simplified
cost expression is not always achievable. In any case of input tensor and number of processors, op-
timizing the processor grid within our framework is sufficient to obtain the communication lower
bounds for MTTKRP [4, 5] to within a constant factor.

Memory. The algorithm requires extra local memory to run. Aside from the memory required
to store the local tensor of O (I/P ) words and factor matrices of cumulative size O ((R/P )

∑
In ),

each processor must be able to store a redundant subset of the rows of the factor matrices it needs
to perform MTTKRP computations. This corresponds to storing P/Pn redundant copies of every
factor matrix, which results in a local memory requirement ofO (R

∑
In/Pn ) for a general processor

grid. The processor grid that minimizes communication also minimizes local memory, and the extra
memory requirement can be as low as O (NRI 1/N /P1/N ), which is typically dominated by O (I/P ).

The dimension tree algorithm also requires extra temporary memory space, but the space re-
quired tends to be much smaller than what is required to store the local tensor. If the tensor di-
mensions can be partitioned into two parts with approximately equal geometric means, then the
extra memory requirement for running a dimension tree is as small as O (R

√
I/P ), which is also

typically dominated by O (I/P ).

4.2 Dimension Trees

4.2.1 General Approach. An important optimization of the alternating updating algorithm for
NCP (and unconstrained CP) is to re-use temporary values across inner iterations [30, 33, 41, 53].
To illustrate the idea, consider a three-way tensor X approximated by �U,V,W� and the two

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



PLANC: Parallel Low-rank Approximation with Nonnegativity Constraints 20:11

Fig. 3. Dimension tree example for N = 5. The data associated with the root node is the original tensor, the
data associated with the leaf nodes are MTTKRP results, and the data associated with internal nodes are
temporary tensors. Edges labeled with PM correspond to partial MTTKRP computations, and edges labeled
with mTTV correspond to multi-TTV computations.

MTTKRP computations M(1) = X(1) (W � V) and M(2) = X(2) (W � U) used to update factor matri-

ces U and V, respectively. The underlined parts of the expressions correspond to the computations

that are shared between M(1) and M(2) and depend only on fixed quantities X and the third factor
matrix W. Indeed, a temporary quantity, which we refer to as a partial MTTKRP, can be computed
and re-used across the two MTTKRP expressions. We refer to the computation that combines the
temporary quantity with the other factor matrix to complete the MTTKRP computation as a multi-
tensor-times-vector or multi-TTV, as it consists of multiple operations that multiply a tensor times
a set of vectors, each corresponding to a different mode.

To understand the steps of the partial MTTKRP and multi-TTV operations in more detail, we
consider X to be I × J × K and U, V, and W to have R columns. Then,

m(1)
ir =

∑

j,k

xi jkvjrwkr =
∑

j

vjr

∑

k

xi jkwkr =
∑

j

vjr ti jr ,

where T is an I × J × R tensor that is the result of a partial MTTKRP between tensor X and the
single factor matrixW . Likewise,

m(2)
jr =

∑

i,k

xi jkuirwkr =
∑

i

uir

∑

k

xi jkwkr =
∑

i

uir ti jr ,

and we see that the temporary tensor T can be re-used and is the underlined part of M(1) =

X(1) (W � V) and M(2) = X(2) (W � U). From these expressions, we can also see that computing

T (a partial MTTKRP) corresponds to a matrix-matrix multiplication, and computing each of M(1)

and M(2) from T (a multi-TTV) corresponds to R independent matrix-vector multiplications. In

this case, we compute M(3) using a full MTTKRP.
For a larger number of modes, a more general approach can organize the temporary quanti-

ties to be used over a maximal number of MTTKRPs. The general approach can yield significant
benefit, decreasing the computation by a factor of approximately N /2 for dense N -way tensors.
The idea is introduced in Phan et al. [53], but we adopt the terminology and notation of dimension

trees used by Kaya et al. [30, 31, 33]. In this notation, the root node is labeled {1, . . . ,N } (we also
use the notation [N ] for this set) and corresponds to the original tensor, a leaf is labeled {n} and

corresponds to the nth MTTKRP result M(n) , and an internal node is labeled by a set of modes
{i, . . . , j} and corresponds to a temporary tensor whose values contribute to the MTTKRP results
of modes i, . . . , j.

Figure 3 illustrates a dimension tree for the case N = 5. Various shapes of binary trees are pos-
sible [30, 53]. For dense tensors, the computational cost is dominated by the root’s branches,
which correspond to partial MTTKRP computations. We perform the splitting of modes at the

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



20:12 S. Eswar et al.

Fig. 4. Data layout and dimensions for two example computations in dimension tree shown in Figure 3.

In this notation, X(1:2) is the matricization of input tensor X with respect to modes 1 through 2, K(1:2) =

H(2) � H(1) , T {3,4,5} is the temporary I3 × I4 × I5 × R tensor corresponding to node {3, 4, 5} in the dimension

tree, K(4:5) = H(5) � H(4) , and M(3) is the MTTKRP result for mode 3. The arrows represent row- vs. column-
major ordering in memory.

root so that modes are chosen contiguously with the respect to the layout of the tensor entries
in memory. In this way, each partial MTTKRP can be performed via BLAS’s GEMM interface
without reordering tensor entries in memory. All other edges in a tree correspond to multi-TTVs
and are typically much cheaper. By organizing the memory layout of temporary quantities, the
multi-TTV operations can be performed via a sequence of calls using BLAS’s GEMV interface.
By using the BLAS in our implementation, we are able to obtain high performance and on-node
parallelism.

Figure 4 shows the data layout and dimensions of a partial MTTKRP and a multi-TTV taken from
the example dimension tree in Figure 3. Figure 4(a) shows a partial MTTKRP between the input
tensor X and the Khatri-Rao product of the factor matrices in modes 1 and 2, which produces a
temporary tensor T corresponding to the {3, 4, 5} node in the dimension tree. The key to efficiency
in this computation is that the matricization of X that assigns modes 1 through 2 to rows and
modes 3 through 5 to columns, which we denote X(1:2) , is already column-major in memory. Thus,
we can use the GEMM interface and compute the temporary tensor T without reordering any
tensor entries. Note that T is a four-way tensor in this case, with its last mode of dimension R, and
the GEMM interface outputs the matrix T(1:3) (where the first three modes are assigned to rows),

which is column-major in memory. Figure 4(b) depicts a multi-TTV that computes the result M(3)

from T and the factor matrices in modes 4 and 5. Here, the tensor T is matricized with respect to
only its first mode (of dimension I3), but this matricization is also column-major in memory. We
choose the ordering of the modes of T such that each of R contiguous blocks is used to compute
one column of the output matrix via a matrix-vector operation with a corresponding column of
the Khatri-Rao product of the other factor matrices.

No matter how the dimension tree is designed, the computational cost of each partial MTTKRP
is 2IR, where I = I1 · · · IN is the number of tensor entries andR is the rank of the CP decomposition.
This is the same operation count as a full MTTKRP. The computational cost of a multi-TTV is the
number of entries in the temporary tensor, which is the product of a subset of the original tensor
dimensions multiplied byR. Thus, it is computationally cheaper than the partial MTTKRPs, but it is
also memory bandwidth bound. The other subroutine necessary for implementing the dimension
tree approach is the Khatri-Rao product of contiguous sets of factor matrices. The computational
cost of this operation is also typically lower order, but the running time in practice suffers also
from being memory bandwidth bound.

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



PLANC: Parallel Low-rank Approximation with Nonnegativity Constraints 20:13

Fig. 5. Dimension tree used in PLANC for general N . Mode S is the “split” mode, chosen so that the product
of dimensions in modes {1, . . . , S } is approximately equal to that of modes {S+1, . . . ,N }. The splits below
the root do not necessarily minimize computation but are chosen for simplicity.

4.2.2 PLANC Implementation. For a given tensor, it is possible to compute the dimension tree
that minimizes overall computation and memory. However, for most problems, the computation
(and actual running time) will be dominated by the choice of split at the root node, and the other
split choices will have negligible effect. The choice of split at the root node has no effect on the
computational cost of the two partial MTTKRPs, but it does affect the temporary memory require-
ment as well as the practical running time, as that split will determine the dimensions of the two
GEMM calls. The three matrix dimensions in the calls are given by the products of the dimensions
of the two subsets of modes and the rank of the decomposition. The amount of additional memory
needed is the size of the larger partial MTTKRP result and is O (I ) if R is less than the smallest
tensor dimension.

To minimize temporary memory and optimize GEMM performance, we seek to split the modes
such that the products of each subset of modes are nearly equal. To respect the memory layout of
the tensor, we consider only contiguous subsets of modes, and thus the split depends on only a
single parameter S , which we refer to as the “split” mode, and split the root into nodes {1, . . . , S }
and {S+1, . . . ,N }. We compute S to be the smallest mode such that the product of the first S modes
is greater than the product of the last N − S modes.

Because the splits within the tree have much less effect on the running time and memory, we
structure our tree to simplify the software implementation. That is, we compute the factor matrices
in order, from 1 to N , and for every internal node of the tree, we split the smallest mode from all
other modes. The structure of the tree we use in PLANC is shown in Figure 5, and the pseudocode
for its implementation is given by Algorithm 3. Note that the structure of the main left subtree
and the main right subtree are identical, and correspondingly the first half of the pseudocode (for
modes 1 to S) is nearly identical to the second half (for modes S+1 to N ), just with different index
ranges.

To explain the pseudocode in more detail, we focus on the first half, or modes 1 through S . The
first mode (n = 1) and the last mode (n = S) are special cases, because the first mode involves the
partial MTTKRP (Line 3) and the last mode does not compute an internal node of the tree. Internal
modes (1 < n < S) involve computing an internal node of the tree and the MTTKRP result for

that mode, both of which are computed via multi-TTVs. We use the notation K(i :j ) to represent

the reverse Khatri-Rao product of factor matrices H(i ) through H(j ) (i.e., K(i :j ) = H(j ) � H(j−1)�
· · · � H(i )), which are computed in Lines 2, 4, and 8. The partial MTTKRP (Line 3) is a matrix
multiplication between a matricization of the tensor where the first S modes are mapped to rows

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



20:14 S. Eswar et al.

and a partial Khatri-Rao product; the output is the temporary tensor T, which is computed as a
matrix withR columns. Each matrix involved is either column- or row-major ordered in memory as

depicted in Figure 4(a), for example, where N = 5. We use notation T
{1:S }
(1:S )

for this output, where the

subscript defines the matricization and the superscript labels the temporary tensor corresponding
to its node in the dimension tree. The multi-TTV operations in Lines 5, 7, 9, and 11 are a set of R
matrix-vector multiplications. We use MATLAB-style notation with parentheses to index the r th
column of the Khatri-Rao product matrix and the MTTKRP result matrix. We use square-bracket
notation to index contiguous column blocks of the temporary tensor. For example, in Line 9, we

use T
{n:S }
(1)

[r ] to denote the r th column block (which comprises In+1 · · · IS columns) of the 1st-mode

matricization of temporary tensorT {n:S } (which has dimensions In × · · · × IS × R). This r th column
block is the same as the 1st-mode matricization of the r th slice of the tensor. The column blocks
are colored distinctly in Figure 4(b), for example, where R = 3.

We note that for on-node parallelization, we rely on multi-threaded BLAS for the GEMM and
GEMV calls, which can be offloaded to a GPU if available. For the partial Khatri-Rao products, we
implement the operation as a row-wise Hadamard product of a set of factor matrix rows, and we
use OpenMP parallelization to obtain on-node parallelism.

ALGORITHM 3: MTTKRP via Dimension Tree

Require: X is original N -way tensor, T {i :j } is temporary tensor of dimension I1 × · · · × Ii−1 × Ij+1 × · · · ×
IN × R

Require: n ∈ [N ] is inner iteration mode (evaluated in order), S ∈ [N ] is fixed split mode

1: if n = 1 then

2: K(S+1:N ) = H(N ) � · · · � H(S+1) % partial Khatri-Rao product

3: T
{1:S }
(1:S )

= X(1:S ) · K(S+1:N ) % partial MTTKRP

4: K(1:S−1) = H(S−1) � · · · � H(1) % partial Khatri-Rao product

5: M(1) (:, r ) = T
{1:S }
(1)

[r ] · K(1:S−1) (:, r ) for each r ∈ [R] % multi-TTV for MTTKRP result

6: else if n < S then

7: T
{n:S }
(1:S−n+1)

(:, r ) = T
{n−1:S }
(1)

[r ]T · H(n−1) (:, r ) for each r ∈ [R] % multi-TTV for internal node tensor

8: K(n+1:S ) = H(S ) � · · · � H(n+1) % partial Khatri-Rao product

9: M(n) (:, r ) = T
{n:S }
(1)

[r ] · K(n+1:S ) (:, r ) for each r ∈ [R] % multi-TTV for MTTKRP result

10: else if n = S then

11: M(S ) (:, r ) = T
{S−1:S }
(1)

[r ] · H(S−1) (:, r ) for each r ∈ [R] % multi-TTV for MTTKRP result

12: else if n = S + 1 then

13: K(1:S ) = H(S ) � · · · � H(1) % partial Khatri-Rao product

14: T
{S+1:N }
(1:N−S )

= XT
(1:S )
· K(1:S ) % partial MTTKRP

15: K(S+2:N ) = H(N ) � · · · � H(S+2) % partial Khatri-Rao product

16: M(S+1) (:, r ) = T
{S+1:N }
(1)

[r ] · K(S+2:N ) (:, r ) for each r ∈ [R] % multi-TTV for MTTKRP result

17: else if n < N then

18: T
{n:N }
(1:N−n+1)

(:, r ) = T
{n−1:N }
(1)

[r ]T · H(n−1) (:, r ) for each r ∈ [R] % multi-TTV for internal node tensor

19: K(n+1:N ) = H(N ) � · · · � H(n+1) % partial Khatri-Rao product

20: M(n) (:, r ) = T
{n:N }
(1)

[r ] · K(n+1:N ) (:, r ) for each r ∈ [R] % multi-TTV for MTTKRP result

21: else

22: M(N ) (:, r ) = T
{N−1:N }
(1)

[r ] · H(N−1) (:, r ) for each r ∈ [R] % multi-TTV for MTTKRP result

23: end if

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



PLANC: Parallel Low-rank Approximation with Nonnegativity Constraints 20:15

4.3 Update Algorithms

In this subsection, we consider updating algorithms for the NLS updates of the factor at each inner
iteration of the algorithm (Line 13 of Algorithm 1). The general problem to be solved in each inner
iteration is a constrained least-squares problem of the form

X← arg min
X≥0

‖AX − B‖2F . (2)

All our updating methods (approximately) solve Equation (2) by first forming ATA and ATB, ma-
trices that appear in the gradient of the objective function. In the case of updating the factor matrix

H(n), we need to solve Equation (2) with X = H(n)T, A = K(n) , where K(n) is the KRP of factor ma-

trices leaving out the nth factor matrix and B = X(n) , where X(n) is the nth mode matricization

of X. In this case, we have ATA = S(n) and ATB = M(n)T
, which correspond to the inputs to the

NLS-Update function in Line 13 of Algorithm 1.
A nice property of the Equation (2) is that it can be decoupled along the columns of X and thus

parallelized as in Algorithm 2. We use the notation Xp to refer to a subset of the columns of X

owned by processor p, or in the case of Line 15 of Algorithm 2, we use H
(n)
p to refer to a subset

of the rows of H(n) = XT. The gradient for this subset of columns depends on the corresponding

columns of ATB = M(n)T
, denoted by M

(n)
p , and all of ATA = S(n) .

Our framework is capable of supporting any alternating-updating NCP algorithm [28]. The up-
dating algorithms that fit this framework and are implemented in PLANC are Multiplicative Up-
date [40], Hierarchical Alternating Least Squares [14, 24], Block Principal Pivoting [36], Alternat-
ing Direction Method of Multipliers [26], and Nesterov-type algorithm [43]. We briefly describe
the different solvers below. Note that the descriptions are for the general form of the NLS problem
as shown in Equation (2).

4.3.1 Multiplicative Update (MU). The MU solve is an elementwise operation [40]. The update
rule for element (i, j ) of X is

X(i, j ) ← X(i, j )
ATB(i, j )(

ATAX
)

(i, j )
. (3)

While this rule does not solve Equation (2) to optimality it ensures a reduction in the objective
value from the initial value of X. Note that Equation (3) breaks down if the denominator becomes
zero. In practice a small value is added to the denominator to prevent this situation.

4.3.2 Hierarchical Alternating Least Squares. HALS updates are performed on individual rows
of X [14, 24]. The update rule for row i can be written in closed form as

X(i, :) ←
⎡⎢⎢⎢⎢⎢⎣
X(i, :) +

(ATB) (i, :) −
(
ATA(i, :)X

)

(ATA) (i, i )

⎤⎥⎥⎥⎥⎥⎦+
, (4)

where [·]+ is the projection operator onto R+. The rows of X are updated in order so that the latest
values are used in every update step. HALS has been observed to produce unbalanced results with
either very large or very small values appearing in the factor matrices [24, 35]. Normalizing the
rows of X after every update via Equation (4) has been proposed to alleviate this problem [24,
35]. Within PLANC’s parallelization, this step requires explicit communication among processors,

because the rows of X (the columns of H(n)) are distributed across processors.

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



20:16 S. Eswar et al.

4.3.3 Block Principal Pivoting. BPP is an active-set like method for solving NLS problems. The
main subroutine of BPP is the single right hand side version of Equation (2),

x← arg min
x≥0

‖Ax − b‖22 . (5)

The Karush-Kuhn-Tucker (KKT) optimality conditions for Equation (5) are specified by x and
y = ATAx − ATb: x � 0, y � 0, and x ∗ y = 0, where ∗ is the Hadamard product. The complemen-
tary slackness criteria from the KKT conditions forces the support sets, i.e., the non-zero elements,
of x and y to be disjoint. In the optimal solution, the active-set is the set of indices where xi = 0
and the remaining indices are referred to as the passive set. Once the active-set is found, we can
find the optimal solution to Equation (5) by solving an unconstrained least-squares problem on
the passive set of indices. The BPP algorithm attempts to find the active set by greedily swapping
indices between the intermediate active and passive sets until it finds a solution that satisfies the
KKT conditions. The unconstrained least squares is solved using the normal equations. Kim and
Park [36] discuss the method in greater detail.

4.3.4 Alternating Direction Method of Multipliers. In the ADMM solver [26] the optimization
problem Equation (2) is reformulated by introducing an auxiliary variable X̂:

min
X,X̂

1

2
���AX̂ − B

���2

F
+ r (X),

subject to X = X̂,

(6)

where r (·) is the penalty function for nonnegativity. It is 0 if X ≥ 0 and∞ otherwise. The updates
for the ADMM algorithm are given by

X̂←
(
ATA + ρI

)−1 (
ATB + ρ (X + U)T

)
,

X← arg min
X

r (X) +
ρ

2
���X − X̂ + U

���2

F
,

U← U + X − X̂,

(7)

where U is the scaled version of the dual variables corresponding to the equality constraints X = X̂

and ρ is a step size specified by the user. U is initialized as a matrix of all zeros. The advantage of
using ADMM is the clever splitting of the nonnegativity constraints into updates of two blocks of
variables X and X̂. This allows for an unconstrained least-squares solve for X̂ and element-wise
projections onto R+ for X.

We can accelerate this solve by repeating the updates given by Equation (7) more than once. One
important fact to notice is that the same matrix ATB and matrix inverse (ATA + ρI)−1 are used for
all the updates. We can therefore cache ATB and the Cholesky decomposition of (ATA + ρI) to
save some computations during subsequent updates. We stop updating using the stopping criteria
described by Huang et al. [26], which is based on ‖X‖F , ‖X̂‖F , and ‖U‖F . Computing these norms
requires communication, because each of these matrices are distributed across processors. We also
limit the maximum number of acceleration steps to 5. By default, a good choice for ρ is ‖A‖2F /R,
where R is the number of columns of A (rank of the CP decomposition) [26]. For a comprehensive
guide to the ADMM method, convergence properties and selection of optimal ρ please refer to
article by Boyd et al. [8].

4.3.5 Nesterov-type Algorithm. The Nesterov-type algorithm in PLANC was introduced by
Liavas et al. [43]. Their method solves a modified version of NLS problem Equation (2) with
the introduction of a proximal term with an auxiliary matrix X∗. The proximal term is useful to

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



PLANC: Parallel Low-rank Approximation with Nonnegativity Constraints 20:17

handle ill-conditioned instances and guarantee strong convexity. The objective function tackled is

fp (X) :=
1

2
‖AX − B‖2F +

λ

2
‖X − X∗‖2F , (8)

where X is constrained to be nonnegative. The gradient of fp is given by the expression

∇fp (X) = −(ATAX − ATB) + λ(X − X∗).

Updates to X are performed using the gradient of fp ,

∇fp (Yk ) =
(
ATB − λX∗

)
+
(
λI − ATA

)
Yk ,

Xk+1 ←
[
Yk − α∇fp (Yk )

]
+
,

Yk+1 ← Xk+1 + βk+1 (Xk+1 − Xk ) ,

(9)

where [·]+ is the projection operator onto R+. Notice that we can update X multiple times
reusing ATA and ATB. This is the acceleration performed for every inner iteration in Line 15
of Algorithm 2. They are repeated until a termination criteria is triggered; different criteria are
discussed in the original paper [43]. The termination criteria are bounds checks on the minimum

and absolute maximum values of X and require communication, because X = H(n)T
is distributed

across processors. We also limit the total number of inner iterations to 20.
The selection of hyperparameters λ,α , and β depends on the singular values of A and is neces-

sary for developing a Nesterov-like method for solving Equation (8). The matrix X∗ is generally X

from the previous outer iteration (Line 8 of Algorithm 2). Details of the selection procedure and
different cases can be found in the original paper [43].

In addition to the acceleration performed during each NLS solve, Equation (9), we can also
perform an acceleration step for every outer iteration in the while loop (Line 8 of Algorithm 2). In
this step all factor matrices are updated using the previous outer iteration values until the objective
stops decreasing. The outer acceleration step for iteration i will be

H
(1)
new ← H

(1)
i + si

(
H

(1)
i − H

(1)
i−1

)
,

H
(2)
new ← H

(2)
i + si

(
H

(2)
i − H

(2)
i−1

)
,

...

H
(N )
new ← H

(N )
i + si

(
H

(N )
i − H

(N )
i−1

)
.

(10)

The results of Equation (10) will be accepted as the next iterate only if the overall objective

error with the new factor matrices, �H(1)
new , . . . ,H

(N )
new �, is lower than that of �H(1)

i , . . . ,H
(N )
i �.

To compute the relative error, we need an extra MTTKRP computation per outer acceleration.
Typically si = i

1/N but its value can change as the overall algorithm progresses [43].

5 SOFTWARE

In this section, we give a brief overview of the PLANC software package structure and ways we
expect users to interact with it. PLANC consists of the following modules—shared memory NMF,
shared memory NTF, distributed memory NMF, and distributed memory NTF. A detailed descrip-
tion of the NTF module is presented with the NMF modules following a similar hierarchy. We
expect users of PLANC to add new NLS solvers and use PLANC to quickly prototype their effi-
cacy on large problems (see References [18, 46], for example). A case study of this interaction is
shown. Another possible extension would be to improve the MTTKRP and matrix multiplication
operations, as done by Moon et al. [48]. These routines are implemented in the abstract class, so

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



20:18 S. Eswar et al.

Fig. 6. PLANC UML class diagram. Solid lines with arrow heads represent is-a relationships (inheritance):
the six algorithm classes near the bottom of the diagram all derive from the abstract class DistAUNTF at
the top. Solid lines with diamond heads represent has-a relationships (composition): NES and AOADMM
classes have extra NCPFactors objects compared to the abstract DistAUNTF class, for example. Dotted lines
represent dependencies.

any performance improvement immediately benefits all NLS solvers. Another possible interaction
with the code would be to utilize the optimized MTTKRP and matrix multiplication operations.
While they are not explicitly exposed by PLANC, extending these classes is relatively easy and has
already been demonstrated by others [13].

5.1 Class Organization

We briefly describe the overall class hierarchy of the PLANC package as illustrated in Figure 6.
PLANC offers both shared and distributed memory implementations of NTF and the classes used
in each type are distinguished by the prefix Dist in their names (e.g., DistAUNTF versus AUNTF).
We shall cover the distributed implementation of NTF in this section. Most of the descriptions can
be directly applied to the shared memory case as well.

There are broadly two types of classes present. Utility classes are primarily for managing data,
setting up the processor grid, and interacting with the user. Algorithm classes perform all the
computations needed for NTF and implement the different NLS solvers.

5.1.1 Utility Classes.

Data. The Tensor and NCPFactors classes contain the input tensor X and the factor matrices

�H(1), . . . ,H(N )�. The Tensor class stores the input tensor as a standard data array. The tensor X
is stored as its mode-1 unfolding X(1) in column major order. Each processor contains its local part
of the tensor (see Section 4.1.2). The NCPFactors class contains all the factor matrices. Each factor
matrix is an Armadillo matrix [55]. The matrices are usually column normalized and the column
norms are stored in the vector λ, which is present as a member of this class (see Algorithm 4).
The vector λ is replicated in all processors whereas the rows of the factor matrices are distributed

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



PLANC: Parallel Low-rank Approximation with Nonnegativity Constraints 20:19

across the processor grid (see Section 4.1.2). There is no global view of the entire input tensor or
factor matrices and care must be taken to communicate parts of either among the processor grid.

Communication. The NTFMPICommunicator class creates the MPI processor grid for Algorithm 2.
In addition to the communicator for the entire grid, it contains a slice communicator for each mode
of the processor grid. The slice communicators are used in the Reduce-Scatter of Line 13 and All-
Gather of Line 19 in Algorithm 2.

I/O. The DistNTFIO utility class is used to read in the input tensor from user-specified files.
DistNTFIO also contains methods to generate random tensors and to write out the factor matrices
to disk. The ParseCommandLine class contains all the command line options available in PLANC.
As the name suggests it parses the different combinations of user inputs to instantiate the driver
class and run the NTF algorithm. Some example user inputs are the target rank of the decomposi-
tion, number of outer iterations, NLS solver, and regularization parameters.

5.1.2 Algorithm Classes.

DistAUNTF. This is the major workhorse class of the package. It is used to implement Algorithm 2.
Some of the important member functions are:

• computeNTF: This is the outer iteration (Line 8 in Algorithm 2).
• distmttkrp: Computes the distributed MTTKRP in Lines 12 and 13 in Algorithm 2.
• gram_hadamard,update_global_gram: These functions are used to compute the Gram

matrix used in the NLS solvers.
• computeError: This function calculates the relative objective error of the factorization as

described in Appendix B.2.

Derived classes. There exist derived classes, such as DistNTFANLSBPP, DistNTFMU, and so on, for
each of the NLS solvers described in Section 4.3. There are two main functions that are present in
the derived classes, which are described below. Auxiliary variables needed to implement certain
NLS solvers like ADMM and Nesterov-type algorithm are also maintained in this class.

• update: This function is the NLS solve function. It returns the updated factor matrix using
the current local MTTKRP result and global Gram matrix (see Section 4.3).

• accelerate: This implements the outer iteration acceleration (Line 8 in Algorithm 2). Cur-
rently only the Nesterov-type algorithm has an outer acceleration step.

5.2 Algorithm Extension

Extending PLANC to include different solvers is a simple task and we list the steps to do so below.

(1) Create a derived class with the newly implemented update function. This is the new NLS
method needed to update the factor matrices.

(2) The constructor for the new class should contain information on whether the algorithm
requires an outer acceleration step. If the method requires an outer acceleration step, then
it needs to be implemented in the derived class.

(3) Update the command line parsing class ParseCommandLine to include additional config-
uration options for the algorithm.

(4) Include the new algorithm as an option in the utilities and the driver files.

Case Study. We describe the different steps needed to extend PLANC to include the Nesterov-
type algorithm.

(1) We first create the DistNTFNES class, which is derived from DistAUNTF.
(2) We implement the update and accelerate functions in the derived class.

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



20:20 S. Eswar et al.

• The Nesterov NLS updates require the previous iterate values (for the auxiliary term as
described in Section 4.3), which may be thought of as a persistent “state” of the algo-
rithm. We utilize an extra NCPFactors object to hold these variables.

• The Nesterov update function needs synchronization to terminate its local
(iterative) NLS solve. This involves accessing the communicators found in
DistNTFMPICommunicator class for the distributed algorithm.

• Finally, Nesterov-type algorithms generally involve an outer acceleration step, which is
also implemented in the derived class DistNTFNES.

(3) We then update the ParseCommandLine class to include Nesterov as an algorithm.
(4) We update the driver file distntf.cpp to include the Nesterov algorithm.

6 PERFORMANCE RESULTS

6.1 Experimental Setup

The entire experimentation was performed on Titan, a supercomputer at the Oak Ridge Leadership
Computing Facility. Titan is a hybrid-architecture Cray XK7 system that contains both advanced
16-core AMD Opteron central processing units (CPUs) and NVIDIA Kepler graphics process-

ing units (GPUs). It features 299,008 CPU cores on 18,688 compute nodes, a total system memory
of 710 terabytes with 32 GB on each node, and Cray’s high-performance Gemini network.

We use Armadillo [55] for matrix representations and operations. In Armadillo, the elements
of the dense matrix are stored in column major order. For dense BLAS and LAPACK operations,
we linked Armadillo with the default LAPACK/BLAS wrappers from Cray. We use the GNU C++
Compiler (g++ (GCC) 6.3.0) and Cray’s MPI library. The code can also compile and run on other
commodity clusters with entirely open source libraries such as OpenBLAS and OpenMPI.

6.2 Datasets

6.2.1 Mouse Data. The “Mouse” data is a 3D dataset that images a mouse’s brain over time and
over a sequence of identical trials [37]. Each entry of the tensor represents a measure of calcium
fluorescence in a particular pixel during a time step of a single trial. The calcium imaging is per-
formed using an epi-fluorescence macroscope viewing the brain through an artificial crystal skull.
Each image has dimension 1, 040 × 1, 392, and the minimum number of time steps across 25 trials
is 69. By flattening the pixel dimensions and discarding time steps after 69 for each trial, we obtain
a tensor of size 1,446,680 × 69 × 25. Every trial is performed with the same mouse and tracks the
same task. The mouse is presented with visual simulation (starting at frame 3), and after a delay is
rewarded with water (starting at frame 25). The CP decomposition can be used as an unsupervised
learning technique to discover underlying patterns within the data. Because the data is nonnega-
tive, an NCP can be more easily interpreted. We show an example interpretation of a component
in Figure 15.

6.2.2 Synthetic. Our synthetic data sets are constructed from a CP model with an exact low
rank with no additional noise. In this case, we can confirm that the residual error of our algorithm
with a random start converges to zero. For the purposes of benchmarking, we run a fixed number
of iterations of the NTF algorithms rather than using a convergence check.

6.3 Performance Breakdown Categories

The list below gives a brief description of all the categories shown in the breakdown plots and
their role in the overall algorithm.

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



PLANC: Parallel Low-rank Approximation with Nonnegativity Constraints 20:21

Table 2. Characteristics of the Various Update Algorithms that can Potentially Affect Performance

Alg Communication Extra MTTKRPs Iterative Tuning
UCP × × × ×
MU × × × ×

HALS � Column Norms × × ×
BPP × × � ×

ADMM � Stopping Criteria × � � Step Size
NES � Stopping Criteria � � � See Section 4.3

The columns are as follows: (1) if the local update requires communication, (2) if the update requires additional MTTKRP

computations, (3) if the local update itself is iterative, (4) if the algorithm’s performance are significantly impacted by

parameter tuning. A � corresponds to the algorithm having the characteristic, and a × means it does not.

(1) Gram: the Gram matrix computation includes both the Gram computation of the local
factor matrices and the Hadamard product of global Gram matrices for each factor matrix.
This computation is performed on each inner iteration but is cheap under the assumption
that R is small relative to the tensor dimensions.

(2) NLS: the cost of a nonnegative least-squares update can vary drastically with the algorithm
used. The various characteristics that may affect run time for each NLS algorithm are
discussed in Section 6.4.

(3) MTTKRP: the (partial) MTTKRP is a purely local computation performed on each node,
and can be offloaded to the GPU. Using the dimension tree optimization (Section 4.2), we
perform 2 partial MTTKRPs for each outer iteration, regardless of the number of modes N .
Both operations are cast as GEMM calls, where the dimensions are given by the product
of the first S mode dimensions (S is the split mode), the product of the last N − S mode
dimensions, and the rank R.

(4) MultiTTV: the MultiTTVs are purely local computations performed on each node. Each
MultiTTV is cast as a set of R GEMV calls, which are typically memory bandwidth bound.

(5) ReduceScatter: the ReduceScatter collective is used to sum MTTKRP results and distribute
portions of the sum appropriately across processors. It is called for each inner iteration.

(6) AllGather: the AllGather collective is used to collect the updated factor matrices to each
processor in the slice corresponding to the mode being updated. It is called after each
inner iteration.

(7) AllReduce: the AllReduce is used to compute the Gram matrices and for computing norms
and other quantities required for stopping criteria of some algorithms.

6.4 Updating Algorithm Distinctions

Table 2 highlights the distinct aspects of each updating algorithm that can affect performance. The
rows of Table 2 denote the different local update algorithms implemented in PLANC. The algo-
rithms names and acronyms in order from top to bottom in Table 2 are as follows: Unconstrained

CP (UCP), MU, HALS, BPP, ADMM, and Nesterov-type algorithm (NES). The aspects of each
algorithm that are displayed in Table 2 are as follows:

• Communication: a check mark and description in this column indicates that the local up-
date algorithm requires some amount of communication. For example, the HALS algorithm
requires the communication of the updated column norms. Additional communication
requirements can affect performance by incurring additional latency and bandwidth costs.
These penalties become significant when the number of processors is high.

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



20:22 S. Eswar et al.

Fig. 7. Per Iteration LUC comparison of NLS algorithms on 4D synthetic and and 3D Mouse tensors.

• Extra MTTKRPs: the NES algorithm has an acceleration step that requires an additional
MTTKRP to be performed. This can potentially increase the run time if the acceleration
step does not decrease the objective function. Experimentally, on both real and synthetic
data sets, we observe that NES run time is significantly increased by the additional MTTKRP
computations.

• Iteration: this column indicates the iterative nature of the local update algorithm. Note that
all of the algorithms we present here are iterative in terms of the outer iteration. UCP, MU,
and HALS all have closed-form formulas for the inner iteration, meaning the number of
flops can be explicitly computed as a function of the problem size. The rest of the algorithms
have flop and communication requirements dependent on the number of iterations it takes
the algorithm to converge for a particular local update.

• Tuning: many optimization algorithms require some tunable input parameters, which can
impact performance. For example, setting a step size is a frequent requirement for gradient-
based optimization algorithms when an exact line search is too computationally expensive.

6.5 Microbenchmarks

6.5.1 Per-iteration Timing Comparison Across Algorithms. Figure 7 shows the “local update
computation” time taken by the different updating algorithms for various low-rank values on a
synthetic data set and the Mouse dataset. The synthetic tensor (Figure 7(a)) involves about 20 Local

Update Computations (LUCs) per processor per iteration whereas the Mouse data (Figure 7(b))
has about 20,000 updates per processor per iteration, which accounts for the difference in the scales
of the time seen in the figures. MU and CP are the cheapest algorithms with NES being the most
expensive. HALS, ADMM, and NES algorithms all communicate in their update steps and this
significantly affects their runtimes, see Figure 13(b). NES has the most expensive inner iteration
involving an Eigen decomposition of the Gram matrix and up to 20 iterations of the NLS updater.
ADMM has the second most expensive inner iteration with up to 5 iterations of the acceleration
step. HALS, however, does not have a very expensive inner iteration but needs a synchronization
to normalize every updated column of the factor matrix before proceeding to the next column,
causing a slowdown.

6.5.2 Comparison Across Processor Grids. Figure 8 gives a processor grid comparison for a 3-D
cubical tensor of size 512. The distributed MTTKRP time dominates the overall run time, and we
observe that an even processor distribution results in the best achieved performance for all update

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



PLANC: Parallel Low-rank Approximation with Nonnegativity Constraints 20:23

Fig. 8. Processor grid sweep of a 512 × 512 × 512 synthetic 3D low-rank tensor on 512 nodes with low rank 96.

Fig. 9. Timing comparison of CPU and GPU offloading on 4D Synthetic Low-rank Tensor of size 384 × 384 ×
384 × 384 on 3 × 3 × 3 × 3 processor grid with varying ranks. Only 2 updating algorithms are shown, because
all other algorithms had results similar to UCP.

algorithms. This difference in run times is partially accounted for by GEMM performance due to
the different shapes of the matrices involved. Besides choosing an even processor grid, we see that
configurations 1 through 6 have quite stable run times with the exception of the NES algorithm.
The variation in the NES run times can be attributed to the variable number of MTTKRPs needed
for the acceleration steps.

6.5.3 Comparison between CPU and GPU Matrix Multiplication Offloading. Figure 9 shows
comparison in run times between performing partial MTTKRPs on the CPU versus offloading
to the GPU as rank increases. We only plot NES and UCP algorithms as they capture all the be-
haviours exhibited in offloading the matrix multiplication. All the other NLS algorithms perform
similarly to UCP. As expected the CPU run times increase linearly with R as the operation count
for UCP is dominated by the MTTKRP, which is linear in R. In the case of the GPU execution, the
tested sizes of R are never large enough to saturate the GPU, yielding flat run times even as the
rank increases. The NES algorithm takes additional time for both the CPU and GPU executions due

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



20:24 S. Eswar et al.

Fig. 10. Relative error over time comparison of updating algorithms on 4D Synthetic Low-rank Tensor of
size 384 × 384 × 384 × 384 on 3 × 3 × 3 × 3 processor grid. Each data point corresponds to an outer iteration.

Fig. 11. Relative error comparison of updating algorithms on 3D Real-world Low-rank Tensor of size
1,447,680 × 69 × 25 on a 64 Titan Nodes as 64 × 1 × 1 Processor Grid for 10 s. Each data point corresponds to
an outer iteration.

to the additional MTTKRPs. In this case, for the chosen tensor size and rank, it is always beneficial
to offload the GEMM calls to the GPU, and the maximum achieved speedup with GPU offloading is
about 7×. However, we have observed in other experiments that NVBLAS can make the incorrect
decision to offload the computation to the GPU when it is faster to perform it on the CPU.

6.6 Convergence Comparison Across Algorithms

Figures 10 and 11 show convergence comparisons (error vs. time) for each of the updating algo-
rithms on synthetic low-rank and Mouse data sets, using two different target ranks each. Every
algorithm is run for a fixed number (30) of outer iterations for fair comparison. For the Mouse
data in Figure 11, we show only the first 10 s, because nearly all algorithms are converging within
30 iterations. The initialized random factors are the same for all algorithms in both tests, and the
synthetic tensor is the same for all algorithms. In both the synthetic and real-world cases BPP
achieves the lowest approximation error in the shortest amount of time. Overall results are as ex-
pected, such as MU achieving the worst error and ADMM achieving the second best in all cases. It
is also note-worthy that on the real-world data set the best algorithms, ADMM and BPP, achieve
relative errors of ≈ 2–3%.

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



PLANC: Parallel Low-rank Approximation with Nonnegativity Constraints 20:25

Fig. 12. Weak scaling on synthetic 3D and 4D low-rank tensors. For the 3D case, the input tensors are of
size 128 × 128 × 128, 256 × 256 × 256, 378 × 378 × 378, and 512 × 512 × 512 on 1, 8, 27, and 64 Titan Nodes,
respectively. The 4D input tensors are 128 × 128 × 128 × 128, 256 × 256 × 256 × 256, 512 × 512 × 512 × 512,
1,024 × 512 × 512 × 512, 1,024 × 512 × 1024 × 512, 1,024 × 1,024 × 1,024 × 512, 1,024 × 1,024 × 1,024 × 1,024,
2,048 × 1,024 × 1,024 × 1,024, 2,048 × 1,024 × 2,048 × 1,024 on 1, 16, 256, 512, 1,024, 2,048, 4,096, 8,192, and
16,384 Titan nodes, respectively. For all experiments, the low rank is 96.

6.7 Scaling Studies

6.7.1 Weak Scaling (Synthetic Data). We performed weak scaling analysis on two different cu-
bical tensors with three and four modes (by cubical, we mean all modes have the same dimension).
Figure 12 shows the time breakdown for scaling up to 64 nodes of Titan for the 3D case and 16384
nodes for the 4D tensor. In each experiment the size of the local tensor is kept constant at di-
mension 128 in each mode for all the runs. As expected, the run time is dominated by the cost to
compute the MTTKRP, and the domination is more extreme for higher mode tensors. Moreover,
we see reasonable weak scaling as the figures remain relatively flat over all processor sizes.

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



20:26 S. Eswar et al.

Fig. 13. Strong scaling on synthetic 3D and 4D low rank tensors with low rank 96.

The variations occur mainly due to the NLS and communication portions of the algorithm. These
do matter in general and especially for the 3D case where the MTTKRP cost is often comparable
to NLS times, especially for smaller number of processors. However, NLS times scale well, since
they split along processor slices rather than fibers and soon become negligible for large processor
grids. The amount of communication per processor remains constant but latency costs increase
slowly as we scale up.

6.7.2 Strong Scaling (Synthetic Data). We run strong scaling experiments on two synthetic cu-
bical tensors, one 3D and one 4D. Figure 13 contains these results for each of the local update
algorithms ranging from 1 to 16384 processors. Since the tensors are cubical, we try to maintain
the processor grids to be as close to cubical as well. For the 3D case the grids used are 2 × 2 × 2,
4 × 2 × 2, 4 × 4 × 2, 4 × 4 × 4 and 8 × 4 × 4. Similarly the grids used for the 4D case are 4 × 4 × 4 × 4,
8 × 4 × 4 × 4, 8 × 4 × 8 × 4, 8 × 8 × 8 × 4, 8 × 8 × 8 × 8, 16 × 8 × 8 × 8, and 16 × 8 × 16 × 8.

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



PLANC: Parallel Low-rank Approximation with Nonnegativity Constraints 20:27

Fig. 14. Strong scaling on Mouse dataset.

We see similar behavior for the 3D and 4D case. For the 3D tensor (Figure 13(a)), we observe
good strong scaling up to about 32 nodes and continue to see speed up through 128 nodes. Similarly
for the 4D case (Figure 13(b)), the algorithms scale well up to about 1,024 nodes and continue to
reduce time until 8,192 nodes; we observe a slowdown when scaling to 16,384 nodes.

One reason for the limit of strong scaling is the communication overheads of AllGather, AllRe-
duce, and ReduceScatter, which become more significant for more processors. The stronger ef-
fect is the performance of the local matrix multiplications within MTTKRP’s dimension tree. The
smallest dimension in the matrix multiplication is typically the low-rank R, which is 96 in these
experiments. For a cubical tensor of odd dimension, in our case three, the dimension tree opti-
mization is often forced to cast partial MTTKRP into a very rectangular matrix multiplication,
depending on the processor grid. Two of the local dimensions must be grouped together while the
other is left alone. This means that the largest dimension would need to be close to the product of
the other two in order for there to be an approximately square matrix (multiplying a tall-skinny
matrix with k columns, for example). The shape and size of these local multiplications hurts the
efficiency of the local computation cost and is the biggest hindrance to strong scalability for these
examples.

6.7.3 Strong Scaling (Real World). Figure 14 show strong scaling results on the Mouse dataset.
We use a 1D P × 1 × 1 processor grid throughout the experiment. The results are in line with
the synthetic results. We achieve near-perfect scaling up to ∼32 nodes and still improve runtimes
through 512 nodes. At 1,024 nodes the NLS algorithms, which communicate during the solve steps,
perform far worse and show up to 2× slowdown. The non-communicating solvers also degrade in
performance but more gracefully.

6.8 Mouse Data Results

The CP decomposition of the Mouse data can be used to interpret brain patterns in response to the
light stimulus and water reward given to the mouse. For example, Figure 15 shows a visualization
of the factors of the 22nd component of the rank-32 CP decomposition. From the time factor, we
see a marked increase in the importance of the component after the reward time frame, which
suggests the activity is a response to the reward. Because the same mouse undergoes 25 identical
trials, we expect to see no pattern in the time factor of each component. We note that the factors

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



20:28 S. Eswar et al.

Fig. 15. Visualization of component 22 of rank-32 CP decomposition of Mouse data. The time factor visual-
ization has been annotated with key time points marked, showing when the light stimulus was applied and
when the water reward was given. The y-axes of the time and trial factors are unitless loading weights. The
brain image factor has been reshaped back into original dimensions to visualize pixels with large weights in
the component.

have been normalized, and the absolute magnitude of the y-axis reflects this. The pixel factor has
been reshaped to an image of the same dimensions of the original data. We observe higher intensity
values in the somatosensory cortex (middle, left), which is associated with bodily sensation. This
component, possibly representing a sensory response to the water reward, aligns well with the
findings of cell-based analysis [37, Figure 3], which also identified neurons in the somatosensory
cortex with intensities that peaked quickly after the reward time frame.

The full set of components for the rank-32 CP decomposition are given in Figures 16 and 17
(Appendix A). We note that the interpretation of these computed components is useful only for
exploratory analysis. Their scientific validity would need to be confirmed with tests of robustness
with respect to choice of rank, random starting point, and algorithm.

7 CONCLUSION

In this work, we present PLANC, a software library for nonnegative low-rank factorizations that
works for tensors of any number of modes and scales to large data sets and high processor
counts. The software framework can be adapted to use any NLS algorithm within the context
of alternating-updating algorithms. We use a dimension tree optimization to avoid unnecessary
recomputation within the bottleneck local MTTKRP computation, and we use an efficient paral-
lelization algorithm that minimizes communication cost. Our performance results show the ability
to (weakly) scale well on synthetic data to over 16,000 nodes (35 TB of data), and we show improved
performance by strong scaling on a mouse brain imaging data set of size 20 GB on up to 512 nodes.

PLANC is able to offload some of the computation to a GPU, and we show that this can sig-
nificantly improve the overall runtime. This is possible because in each iteration the bottleneck
computation (MTTKRP) can be cast as a pair of matrix multiplications (GEMMs), which benefit
from GPU acceleration for sufficiently large dimensions. These dimensions depend on the (local)
tensor size and the rank of the CP decomposition. Two of the dimensions can be tuned by the
processor grid, which determines the local tensor dimensions, and the choice of dimension tree.
Therefore two of the matrix multiplication dimensions are typically large. The third dimension is
exactly the rank of the decomposition, so it is typically the smallest dimension and the limitation
on GPU efficiency.

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



PLANC: Parallel Low-rank Approximation with Nonnegativity Constraints 20:29

The PLANC software framework is designed to be extensible to NCP algorithms, and we demon-
strate how to add an algorithm (the Nesterov-based algorithm) to the library. While previous work
argued that overall performance was agnostic to NLS algorithm choice [28], these results show that
for NLS algorithms that involve extra communication or significant computation, the per-iteration
running time can be noticeably affected. In these cases, the time to solution depends both on the
per-iteration time and the convergence rate (number of iterations).

PLANC is available at https://github.com/ramkikannan/planc. It provides both shared and dis-
tributed memory parallel algorithms for computing dense NMF, sparse NMF, and dense NTF.
Sparse NTF is not currently supported by PLANC but there are plans to provide functionality
for sparse NTF in the future.

APPENDICES

A FULL RESULTS FOR MOUSE DATA

Figures 16 and 17 show all 32 components of a CP decomposition of the Mouse data. This de-
composition includes the component highlighted in Figure 15. The components are ordered by
their weight in the λ vector. The vertical bars in Figure 16(a) correspond to the frames of the light
stimulus and water reward, respectively.

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.

https://github.com/ramkikannan/planc


20:30 S. Eswar et al.

Fig. 16. Time and trial factors of rank-32 CP decomposition of Mouse data.

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



PLANC: Parallel Low-rank Approximation with Nonnegativity Constraints 20:31

Fig. 17. Brain factors of rank-32 CP decomposition of Mouse data.

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



20:32 S. Eswar et al.

B DETAILED PARALLEL ALGORITHM

Algorithm 4 presents a more detailed version of the Parallel NCP Algorithm. The simpler version
appears in Section 4 as Algorithm 2. In particular, Algorithm 4 includes the pseudocode for factor
matrix normalization and relative error computation as described below.

B.1 Factor Matrix Normalization

The CP decomposition has a scale indeterminacy. To prevent possible growth in factor matrix
entries, each time a factor matrix is updated, each of the R columns is normalized using the 2-
norm and the weights are stored in an auxiliary vector λ. In the distributed algorithm these steps
can been seen on Lines 21–23 in Algorithm 4. Note that communication is required as the global
factor matrix column norms are computed.

On an algorithmic level one can observe why this step is necessary from the objective function

for updating a single factor matrix in the inner iteration minH(n ) ‖X(n) − H(n)Λ(H(N ) � · · ·H(n+1) �
H(n−1) · · · � H(1) )‖2F , where Λ is the diagonal matrix with the λ vector as its diagonal values. To

solve, we simply collapse H(n)Λ together. Thus, when the solve occurs, we are actually computing

H(n)Λ, which is then normalized to obtain both H(n) and the new λ.

B.2 Relative Error Computation

Given a model M = �H(1), . . . ,H(N )�, we compute the relative error ‖X −M‖/‖X‖ efficiently by
using the identity ‖X −M‖2 = ‖X‖2 − 2〈X,M〉 + ‖M‖2. The quantity ‖X‖ is fixed, and the other
two terms can be computed cheaply given the temporary matrices computed during the course

of the algorithm. The second term can be computed using the identity 〈X,M〉 = 〈M(N ),H(N )〉,
where M(N ) = X(N ) (H

(N−1) � · · · � H(1) ) is the MTTKRP result in the N th mode. The third term

can be computed using the identity ‖M‖2 = 1T (S(N ) ∗ H(N )TH(N ) )1 where S(N ) = H(1)TH(1) ∗ · · · ∗
H(N−1)TH(N−1) . Both matrices M(N ) and S(N ) are computed during the course of the algorithm for

updating the factor matrix H(N ) , so the extra computation involved in computing the relative error
is negligible. See Lines 29 to 33 in Algorithm 4. These identities have been used previously [38, 43,
54, 59].

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



PLANC: Parallel Low-rank Approximation with Nonnegativity Constraints 20:33

ALGORITHM 4: (�λ; H(1), . . . ,H(N )�, ϵ ) = Par-NCP(X,R)

Require: X is an I1 × · · · × IN tensor distributed across a P1 × · · · × PN grid of P processors, so
that Xp is (I1/P1) × · · · × (IN /PN ) and is owned by processor p = (p1, . . . ,pN ), R is rank of
approximation

1: % Initialize data

2: a = Norm-Squared(Xp)
3: α = All-Reduce(a,All-Procs)
4: ϵ = Inf
5: for n = 2 to N do

6: Initialize H
(n)
p of dimensions (In/P ) × R

7: G = Local-SYRK(H(n)
p )

8: G(n) = All-Reduce(G,All-Procs)

9: H
(n)
pn
= All-Gather(H(n)

p , Proc-Slice(n,pn ))
10: end for

11: % Compute NCP approximation

12: while ϵ > tol do

13: % Perform outer iteration

14: for n = 1 to N do

15: % Compute new factor matrix in nth mode

16: M = Local-MTTKRP(Xp1 · · ·pN
, {H(i )

pi
},n)

17: M
(n)
p = Reduce-Scatter(M, Proc-Slice(n,pn ))

18: S(n) = G(1) ∗ · · · ∗ G(n−1) ∗ G(n+1) ∗ · · · ∗ G(N )

19: Ĥ
(n)
p = NLS-Update(S(n),M

(n)
p )

20: % Normalize columns

21: λ = Local-Col-Norms(Ĥ
(n)
p )

22: λ = All-Reduce(λ,All-Procs)

23: H
(n)
p = Local-Col-Scale(Ĥ

(n)
p ,λ)

24: % Organize data for later modes

25: G = H
(n)
p

T
H

(n)
p

26: G(n) = All-Reduce(G,All-Procs)

27: H
(n)
pn
= All-Gather(H(n)

p , Proc-Slice(n,pn ))
28: end for

29: % Compute relative error ϵ from mode-N matrices

30: β = Inner-Product(M(N )
p , Ĥ

(N )
p )

31: β = All-Reduce(β,All-Procs)

32: γ = λT (S(N ) ∗ G(N ) )λ
33: ϵ =

√
(α − 2β + γ )/α

34: end while

Ensure: ‖X − �λ; H(1), . . . ,H(N )�‖/‖X‖ = ϵ

Ensure: Local matrices: H
(n)
p is (In/P ) × R and owned by processor p = (p1, . . . ,pN ), for 1 � n �

N , λ stored redundantly on every processor

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.



20:34 S. Eswar et al.

ACKNOWLEDGMENTS

We thank Tony Hyun Kim and Mark Schnitzer for providing the Mouse dataset and help with
interpretation of the CP components.

REFERENCES

[1] Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus Telgarsky. 2014. Tensor decompo-

sitions for learning latent variable models. J. Mach. Learn. Res. 15 (2014), 2773–2832. http://jmlr.org/papers/v15/

anandkumar14b.html

[2] Brett W. Bader and Tamara G. Kolda. 2007. Efficient MATLAB computations with sparse and factored tensors. SIAM

J. Sci. Comput. 30, 1 (Dec. 2007), 205–231. DOI:https://doi.org/10.1137/060676489

[3] Grey Ballard, Koby Hayashi, and Ramakrishnan Kannan. 2018. Parallel nonnegative CP decomposition of dense

tensors. In Proceedings of the 25th IEEE International Conference on High Performance Computing (HiPC’18). 22–31.

DOI:https://doi.org/10.1109/HiPC.2018.00012

[4] Grey Ballard, Nicholas Knight, and Kathryn Rouse. 2018. Communication lower bounds for matricized tensor times

Khatri-Rao product. In Proceedings of the 32nd IEEE International Parallel and Distributed Processing Symposium. 557–

567. DOI:https://doi.org/10.1109/IPDPS.2018.00065

[5] Grey Ballard and Kathryn Rouse. 2020. General memory-independent lower bound for MTTKRP. In Proceedings of the

SIAM Conference on Parallel Processing for Scientific Computing. 1–11. DOI:https://doi.org/10.1137/1.9781611976137.1

[6] Muthu Baskaran, Benoît Meister, Nicolas Vasilache, and Richard Lethin. 2012. Efficient and scalable computations

with sparse tensors. In Proceedings of the IEEE Conference on High Performance Extreme Computing. IEEE, 1–6. Re-

trieved from https://ieeexplore.ieee.org/abstract/document/6408676.

[7] Casey Battaglino, Grey Ballard, and Tamara G. Kolda. 2018. A practical randomized CP tensor decomposition. SIAM

J. Matrix Anal. Appl. 39, 2 (2018), 876–901. https://doi.org/10.1137/17M1112303

[8] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein et al. 2011. Distributed optimization and

statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1 (2011), 1–122.

https://doi.org/10.1561/2200000016

[9] Rasmus Bro and Claus A. Andersson. 1998. Improving the speed of multiway algorithms: Part II: Compression.

Chemometr. Intell. Lab. Syst. 42, 1-2 (1998), 105–113. https://doi.org/10.1016/S0169-7439(98)00011-2

[10] Rasmus Bro and Sijmen De Jong. 1997. A fast non-negativity-constrained least-squares algorithm. J. Chemometr.: J.

Chemometr. Soc. 11, 5 (1997), 393–401. https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:5〈393::AID-CEM483〉3.

0.CO;2-L

[11] J. Douglas Carroll and Jih-Jie Chang. 1970. Analysis of individual differences in multidimensional scaling via an n-

way generalization of “Eckart-Young” decomposition. Psychometrika 35, 3 (01 Sep 1970), 283–319. DOI:https://doi.

org/10.1007/BF02310791

[12] E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn. 2007. Collective communication: Theory, practice, and

experience. Concurr. Comput.: Pract. Exper. 19, 13 (2007), 1749–1783. https://onlinelibrary.wiley.com/doi/abs/10.1002/

cpe.1206

[13] Gopinath Chennupati, Raviteja Vangara, Erik Skau, Hristo Djidjev, and Boian Alexandrov. 2020. Distributed non-

negative matrix factorization with determination of the number of latent features. J. Supercomput. 76, (2020), 7458–

7488. https://doi.org/10.1007/s11227-020-03181-6

[14] Andrzej Cichocki and Anh-Huy Phan. 2009. Fast local algorithms for large scale nonnegative matrix and tensor

factorizations. IEICE Trans. Fund. Electron. Commun. Comput. Sci. E92-A (2009), 708–721. Issue 3. http://dx.doi.org/10.

1587/transfun.E92.A.708

[15] Andrzej Cichocki, Rafal Zdunek, and Shun-ichi Amari. 2008. Nonnegative matrix and tensor factorization [lecture

notes]. IEEE Signal Process. Mag. 25, 1 (2008), 142–145. https://doi.org/10.1109/MSP.2008.4408452

[16] Petros Drineas, Michael W. Mahoney, S. Muthukrishnan, and Tamás Sarlós. 2011. Faster least-squares approximation.

Numerische Mathematik 117, 2 (2011), 219–249. https://doi.org/10.1007/s00211-010-0331-6

[17] N. Benjamin Erichson, Ariana Mendible, Sophie Wihlborn, and J. Nathan Kutz. 2018. Randomized nonnegative matrix

factorization. Pattern Recogn. Lett. 104 (2018), 1–7. https://doi.org/10.1016/j.patrec.2018.01.007

[18] S. Eswar, K. Hayashi, G. Ballard, R. Kannan, R. Vuduc, and H. Park. 2020. Distributed-memory parallel symmetric

nonnegative matrix factorization. In Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis (SC’20). IEEE Computer Society, 1041–1054. Retrieved from https://dl.acm.org/doi/

10.5555/3433701.3433799.

[19] Xiao Fu, Cheng Gao, Hoi-To Wai, and Kejun Huang. 2019. Block-randomized stochastic proximal gradient for con-

strained low-rank tensor factorization. In Proceedings of the IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP’19). IEEE, 7485–7489. http://dx.doi.org/10.1109/ICASSP.2019.8682465

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.

http://jmlr.org/papers/v15/anandkumar14b.html
http://jmlr.org/papers/v15/anandkumar14b.html
https://doi.org/10.1137/060676489
https://doi.org/10.1109/HiPC.2018.00012
https://doi.org/10.1109/IPDPS.2018.00065
https://doi.org/10.1137/1.9781611976137.1
https://ieeexplore.ieee.org/abstract/document/6408676
https://doi.org/10.1137/17M1112303
https://doi.org/10.1561/2200000016
https://doi.org/10.1016/S0169-7439(98)00011-2
https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
https://doi.org/10.1007/BF02310791
https://doi.org/10.1007/BF02310791
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1206
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1206
https://doi.org/10.1007/s11227-020-03181-6
http://dx.doi.org/10.1587/transfun.E92.A.708
http://dx.doi.org/10.1587/transfun.E92.A.708
https://doi.org/10.1109/MSP.2008.4408452
https://doi.org/10.1007/s00211-010-0331-6
https://doi.org/10.1016/j.patrec.2018.01.007
https://dl.acm.org/doi/10.5555/3433701.3433799
https://dl.acm.org/doi/10.5555/3433701.3433799
http://dx.doi.org/10.1109/ICASSP.2019.8682465


PLANC: Parallel Low-rank Approximation with Nonnegativity Constraints 20:35

[20] Lars Grasedyck. 2010. Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31, 4 (2010),

2029–2054. https://doi.org/10.1137/090764189

[21] Wolfgang Hackbusch. 2014. Numerical tensor calculus. Acta Numerica 23 (2014), 651–742. DOI:https://doi.org/10.

1017/S0962492914000087

[22] Lixing Han, Michael Neumann, and Upendra Prasad. 2009. Alternating projected Barzilai-Borwein methods for non-

negative matrix factorization. Electron. Trans. Numer. Anal 36, 6 (2009), 54–82. Retrieved from http://etna.mcs.kent.

edu/volumes/2001-2010/vol36/abstract.php?vol=36&pages=54-82.

[23] Richard A. Harshman. 1970. Foundations of the PARAFAC procedure: Models and conditions for an explanatory

multimodal factor analysis. Working Papers Phonet. 16, 10,085 (1970), 1–84. http://www.psychology.uwo.ca/faculty/

harshman/wpppfac0.pdf

[24] Ngoc-Diep Ho. 2008. Nonnegative Matrix Factorization Algorithms and Applications. Ph.D. Dissertation. Université

Catholique De Louvain. Retrieved from https://perso.uclouvain.be/paul.vandooren/ThesisHo.pdf.

[25] Kejun Huang, Nicholas D. Sidiropoulos, and Athanasios P. Liavas. 2015. Efficient algorithms for universally con-

strained matrix and tensor factorization. In Proceedings of the 23rd European Signal Processing Conference (EU-

SIPCO’15). IEEE, 2521–2525. http://dx.doi.org/10.1109/EUSIPCO.2015.7362839

[26] Kejun Huang, Nicholas D. Sidiropoulos, and Athanasios P. Liavas. 2016. A flexible and efficient algorithmic framework

for constrained matrix and tensor factorization. IEEE Trans. Signal Process. 64, 19 (2016), 5052–5065. http://dx.doi.org/

10.1109/TSP.2016.2576427

[27] Stephen Jesse, Miaofang Chi, Albina Borisevich, Alexei Belianinov, Sergei Kalinin, Eirik Endeve, Richard K. Archibald,

Christopher T. Symons, and Andrew R. Lupini. 2016. Using multivariate analysis of scanning-Ronchigram data to re-

veal material functionality. Microsc. Microanal. 22 (July 2016), 292–293. http://dx.doi.org/10.1017/S1431927616002312

[28] Ramakrishnan Kannan, Grey Ballard, and Haesun Park. 2016. A high-performance parallel algorithm for nonnega-

tive matrix factorization. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP’16). ACM, Article 9, 11 pages. DOI:https://doi.org/10.1145/2851141.2851152

[29] Ramakrishnan Kannan, Grey Ballard, and Haesun Park. 2018. MPI-FAUN: An MPI-based framework for alternating-

updating nonnegative matrix factorization. IEEE Trans. Knowl. Data Eng. 30, 3 (2018), 544–558. https://www.computer.

org/csdl/trans/tk/2018/03/08089433-abs.html

[30] Oguz Kaya. 2017. High Performance Parallel Algorithms for Tensor Decompositions. Ph.D. Dissertation. University of

Lyon. Retrieved from https://tel.archives-ouvertes.fr/tel-01623523.

[31] Oguz Kaya and Yves Robert. 2019. Computing dense tensor decompositions with optimal dimension trees. Algorith-

mica 81 (2019), 2092–2121. DOI:https://doi.org/10.1007/s00453-018-0525-3

[32] Oguz Kaya and Bora Uçar. 2016. High performance parallel algorithms for the Tucker decomposition of sparse tensors.

In Proceedings of the 45th International Conference on Parallel Processing (ICPP’16). 103–112. DOI:https://doi.org/10.

1109/ICPP.2016.19

[33] Oguz Kaya and Bora Uçar. 2018. Parallel CANDECOMP/PARAFAC decomposition of sparse tensors using dimension

trees. SIAM J. Sci. Comput. 40, 1 (2018). DOI:https://doi.org/10.1137/16M1102744

[34] Dongmin Kim, Suvrit Sra, and Inderjit S. Dhillon. 2007. Fast Newton-type methods for the least-squares nonnegative

matrix approximation problem. In Proceedings of the SIAM International Conference on Data Mining. SIAM, 343–354.

https://doi.org/10.1137/1.9781611972771.31

[35] Jingu Kim, Yunlong He, and Haesun Park. 2014. Algorithms for nonnegative matrix and tensor factorizations: A

unified view based on block coordinate descent framework. J. Global Optimiz. 58, 2 (Feb. 2014), 285–319. DOI:https:

//doi.org/10.1007/s10898-013-0035-4

[36] Jingu Kim and Haesun Park. 2011. Fast nonnegative matrix factorization: An active-set-like method and comparisons.

SIAM J. Sci. Comput. 33, 6 (2011), 3261–3281. https://doi.org/10.1137/110821172

[37] Tony Hyun Kim, Yanping Zhang, Jérôme Lecoq, Juergen C. Jung, Jane Li, Hongkui Zeng, Cristopher M. Niell, and

Mark J. Schnitzer. 2016. Long-term optical access to an estimated one million neurons in the live mouse cortex. Cell

Rep. 17, 12 (2016), 3385–3394. DOI:https://doi.org/10.1016/j.celrep.2016.12.004

[38] T. G. Kolda and B. W. Bader. 2009. Tensor decompositions and applications. SIAM Rev. 51, 3 (Sep. 2009), 455–500.

DOI:https://doi.org/10.1137/07070111X

[39] Charles L. Lawson and Richard J. Hanson. 1995. Solving Least Squares Problems. Vol. 15. SIAM. https://doi.org/10.1137/

1.9781611971217

[40] Daniel D. Lee and H. Sebastian Seung. 1999. Learning the parts of objects by non-negative matrix factorization. Nature

401, 6755 (1999), 788. https://doi.org/10.1038/44565

[41] J. Li, J. Choi, I. Perros, J. Sun, and R. Vuduc. 2017. Model-driven sparse CP decomposition for higher-order tensors. In

Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS’17). 1048–1057. DOI:https:

//doi.org/10.1109/IPDPS.2017.80

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.

https://doi.org/10.1137/090764189
https://doi.org/10.1017/S0962492914000087
https://doi.org/10.1017/S0962492914000087
http://etna.mcs.kent.edu/volumes/2001-2010/vol36/abstract.php?vol=36&pages=54-82
http://etna.mcs.kent.edu/volumes/2001-2010/vol36/abstract.php?vol=36&pages=54-82
http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf
http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf
https://perso.uclouvain.be/paul.vandooren/ThesisHo.pdf
http://dx.doi.org/10.1109/EUSIPCO.2015.7362839
http://dx.doi.org/10.1109/TSP.2016.2576427
http://dx.doi.org/10.1109/TSP.2016.2576427
http://dx.doi.org/10.1017/S1431927616002312
https://doi.org/10.1145/2851141.2851152
https://www.computer.org/csdl/trans/tk/2018/03/08089433-abs.html
https://www.computer.org/csdl/trans/tk/2018/03/08089433-abs.html
https://tel.archives-ouvertes.fr/tel-01623523
https://doi.org/10.1007/s00453-018-0525-3
https://doi.org/10.1109/ICPP.2016.19
https://doi.org/10.1109/ICPP.2016.19
https://doi.org/10.1137/16M1102744
https://doi.org/10.1137/1.9781611972771.31
https://doi.org/10.1007/s10898-013-0035-4
https://doi.org/10.1007/s10898-013-0035-4
https://doi.org/10.1137/110821172
https://doi.org/10.1016/j.celrep.2016.12.004
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/1.9781611971217
https://doi.org/10.1137/1.9781611971217
https://doi.org/10.1038/44565
https://doi.org/10.1109/IPDPS.2017.80
https://doi.org/10.1109/IPDPS.2017.80


20:36 S. Eswar et al.

[42] A. P. Liavas, G. Kostoulas, G. Lourakis, K. Huang, and N. D. Sidiropoulos. 2018. Nesterov-based alternating optimiza-

tion for nonnegative tensor factorization: Algorithm and parallel implementation. IEEE Trans. Signal Process. 66, 4

(2018), 944–953.

[43] Athanasios P. Liavas, Georgios Kostoulas, Georgios Lourakis, Kejun Huang, and Nicholas D. Sidiropoulos. 2017.

Nesterov-based parallel algorithm for large-scale nonnegative tensor factorization. In Proceedings of the IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP’17). IEEE, 5895–5899. https://doi.org/10.1109/

ICASSP.2017.7953287

[44] Chih-Jen Lin. 2007. Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19, 10 (2007),

2756–2779. https://doi.org/10.1162/neco.2007.19.10.2756

[45] Linjian Ma and Edgar Solomonik. 2018. Accelerating alternating least squares for tensor decomposition by pairwise

perturbation. Retrieved from https://arxiv.org/abs/1811.10573.

[46] Lawton Manning, Grey Ballard, Ramakrishnan Kannan, and Haesun Park. 2020. Parallel hierarchical clustering using

rank-two nonnegative matrix factorization. In Proceedings of the 27th IEEE International Conference on High Perfor-

mance Computing.

[47] Michael Merritt and Yin Zhang. 2005. Interior-point gradient method for large-scale totally nonnegative least-squares

problems. J. Optimiz. Theory Appl. 126, 1 (2005), 191–202. https://doi.org/10.1007/s10957-005-2668-z

[48] Gordon E. Moon, Aravind Sukumaran-Rajam, Srinivasan Parthasarathy, and P. Sadayappan. 2019. PL-NMF: Parallel

locality-optimized non-negative matrix factorization. Retrieved from https://arxiv.org/abs/1904.07935.

[49] Israt Nisa, Jiajia Li, Aravind Sukumaran-Rajam, Richard Vuduc, and P. Sadayappan. 2019. Load-balanced sparse MT-

TKRP on GPUs. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS’19).

IEEE, 123–133. https://doi.org/10.1109/IPDPS.2019.00023

[50] Pentti Paatero. 1997. A weighted non-negative least-squares algorithm for three-way PARAFAC factor analysis.

Chemometr. Intell. Lab. Syst. 38, 2 (1997), 223–242. DOI:https://doi.org/10.1016/S0169-7439(97)00031-2

[51] Evangelos E. Papalexakis, Christos Faloutsos, and Nicholas D. Sidiropoulos. 2012. Parcube: Sparse parallelizable tensor

decompositions. In Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in

Databases. Springer, 521–536. https://doi.org/10.1007/978-3-642-33460-3_39

[52] Anh Huy Phan and Andrzej Cichocki. 2011. PARAFAC algorithms for large-scale problems. Neurocomputing 74, 11

(2011), 1970–1984. DOI:https://doi.org/10.1016/j.neucom.2010.06.030

[53] Anh-Huy Phan, Petr Tichavsky, and Andrzej Cichocki. 2013. Fast alternating LS algorithms for high order CAN-

DECOMP/PARAFAC tensor factorizations. IEEE Trans. Signal Process. 61, 19 (Oct. 2013), 4834–4846. DOI:https:

//doi.org/10.1109/TSP.2013.2269903

[54] Anh-Huy Phan, Petr Tichavsky, and Andrzej Cichocki. 2013. TENSORBOX: A MATLAB package for tensor decom-

position. Retrieved from https://github.com/phananhhuy/TensorBox.

[55] Conrad Sanderson. 2010. Armadillo: An Open Source C++ Linear Algebra Library for Fast Prototyping and Compu-

tationally Intensive Experiments. Technical Report. NICTA. Retrieved from http://arma.sourceforge.net/armadillo_

nicta_2010.pdf.

[56] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and C. Faloutsos. 2017. Tensor decomposition

for signal processing and machine learning. IEEE Trans. Signal Process. 65, 13 (July 2017), 3551–3582. DOI:https:

//doi.org/10.1109/TSP.2017.2690524

[57] Navjot Singh, Linjian Ma, Hongru Yang, and Edgar Solomonik. 2019. Comparison of Accuracy and Scalability of Gauss-

Newton and Alternating Least Squares for CP Decomposition. Technical Report. Retrieved from https://arxiv.org/abs/

1910.12331.

[58] S. Smith, A. Beri, and G. Karypis. 2017. Constrained tensor factorization with accelerated AO-ADMM. In Proceedings of

the 46th International Conference on Parallel Processing (ICPP’17). 111–120. DOI:https://doi.org/10.1109/ICPP.2017.20

[59] Shaden Smith and George Karypis. 2016. A medium-grained algorithm for distributed sparse tensor factorization.

In Proceedings of the IEEE 30th International Parallel and Distributed Processing Symposium. 902–911. DOI:https://doi.

org/10.1109/IPDPS.2016.113

[60] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis. 2015. SPLATT: Efficient and parallel sparse tensor-

matrix multiplication. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium. 61–70.

DOI:https://doi.org/10.1109/IPDPS.2015.27

[61] Edgar Solomonik, Devin Matthews, Jeff R. Hammond, John F. Stanton, and James Demmel. 2014. A massively parallel

tensor contraction framework for coupled-cluster computations. J. Parallel Distrib. Comput. 74, 12 (2014), 3176–3190.

DOI:https://doi.org/10.1016/j.jpdc.2014.06.002

[62] Bing Tang, Linyao Kang, Yanmin Xia, and Li Zhang. 2018. GPU-accelerated large-scale non-negative matrix factoriza-

tion using spark. In Proceedings of the International Conference on Collaborative Computing: Networking, Applications

and Worksharing. Springer, 189–201. https://doi.org/10.1007/978-3-030-12981-1_13

[63] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Optimization of collective communication operations

in MPICH. Int. J. High Perform. Comput. Appl. 19, 1 (2005), 49–66. DOI:https://doi.org/10.1177/1094342005051521

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.

https://doi.org/10.1109/ICASSP.2017.7953287
https://doi.org/10.1109/ICASSP.2017.7953287
https://doi.org/10.1162/neco.2007.19.10.2756
https://arxiv.org/abs/1811.10573
https://doi.org/10.1007/s10957-005-2668-z
https://arxiv.org/abs/1904.07935
https://doi.org/10.1109/IPDPS.2019.00023
https://doi.org/10.1016/S0169-7439(97)00031-2
https://doi.org/10.1007/978-3-642-33460-3_39
https://doi.org/10.1016/j.neucom.2010.06.030
https://doi.org/10.1109/TSP.2013.2269903
https://doi.org/10.1109/TSP.2013.2269903
https://github.com/phananhhuy/TensorBox
http://arma.sourceforge.net/armadillo_nicta_2010.pdf
http://arma.sourceforge.net/armadillo_nicta_2010.pdf
https://doi.org/10.1109/TSP.2017.2690524
https://doi.org/10.1109/TSP.2017.2690524
https://arxiv.org/abs/1910.12331
https://arxiv.org/abs/1910.12331
https://doi.org/10.1109/ICPP.2017.20
https://doi.org/10.1109/IPDPS.2016.113
https://doi.org/10.1109/IPDPS.2016.113
https://doi.org/10.1109/IPDPS.2015.27
https://doi.org/10.1016/j.jpdc.2014.06.002
https://doi.org/10.1007/978-3-030-12981-1_13
https://doi.org/10.1177/1094342005051521


PLANC: Parallel Low-rank Approximation with Nonnegativity Constraints 20:37

[64] Giorgio Tomasi and Rasmus Bro. 2006. A comparison of algorithms for fitting the PARAFAC model. Comput. Stat.

Data Anal. 50, 7 (2006), 1700–1734. https://doi.org/10.1016/j.csda.2004.11.013

[65] Mark H. Van Benthem and Michael R. Keenan. 2004. Fast algorithm for the solution of large-scale non-negativity-

constrained least-squares problems. J. Chemometr.: J. Chemometr. Soc. 18, 10 (2004), 441–450. https://onlinelibrary.

wiley.com/doi/abs/10.1002/cem.889

[66] Nico Vervliet, Otto Debals, and Lieven De Lathauwer. 2019. Exploiting efficient representations in large-scale tensor

decompositions. SIAM J. Sci. Comput. 41, 2 (2019), A789–A815. DOI:https://doi.org/10.1137/17M1152371

[67] Yining Wang, Hsiao-Yu Tung, Alexander J. Smola, and Anima Anandkumar. 2015. Fast and guaranteed tensor de-

composition via sketching. In Advances in Neural Information Processing Systems. 991–999. Retrieved from https:

//dl.acm.org/doi/10.5555/2969239.2969350.

[68] Max Welling and Markus Weber. 2001. Positive tensor factorization. Pattern Recogn. Lett. 22, 12 (2001), 1255–1261.

DOI:https://doi.org/10.1016/S0167-8655(01)00070-8

Received August 2019; revised June 2020; accepted October 2020

ACM Transactions on Mathematical Software, Vol. 47, No. 3, Article 20. Publication date: June 2021.

https://doi.org/10.1016/j.csda.2004.11.013
https://onlinelibrary.wiley.com/doi/abs/10.1002/cem.889
https://onlinelibrary.wiley.com/doi/abs/10.1002/cem.889
https://doi.org/10.1137/17M1152371
https://dl.acm.org/doi/10.5555/2969239.2969350
https://dl.acm.org/doi/10.5555/2969239.2969350
https://doi.org/10.1016/S0167-8655(01)00070-8

