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AN ALTERNATING RANK-k NONNEGATIVE LEAST SQUARES
FRAMEWORK (ARkNLS) FOR NONNEGATIVE MATRIX
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Abstract. Nonnegative matrix factorization (NMF) is a prominent technique for data dimen-
sionality reduction that has been widely used for text mining, computer vision, pattern discovery,
and bioinformatics. In this paper, a framework called ARkNLS (alternating rank-k nonnegativity-
constrained least squares) is proposed for computing NMF. First, a recursive formula for the solution
of the rank-k nonnegativity-constrained least squares (NLS) is established. This recursive formula
can be used to derive the closed-form solution for the rank-k NLS problem for any integer k \geq 1.
As a result, each subproblem for an alternating rank-k nonnegative least squares framework can be
obtained based on this closed-form solution. Assuming that all matrices involved in rank-k NLS in
the context of NMF computation are of full rank, two of the currently best NMF algorithms HALS
(hierarchical alternating least squares) and ANLS-BPP (alternating NLS based on block principal
pivoting) can be considered as special cases of ARkNLS with k = 1 and k = r for rank-r NMF,
respectively. This paper then focuses on the framework with k = 3, which leads to a new algorithm
for NMF via the closed-form solution of the rank-3 NLS problem. Furthermore, a new strategy that
efficiently overcomes the potential singularity problem in rank-3 NLS within the context of NMF
computation is also presented. Extensive numerical comparisons using real and synthetic data sets
demonstrate that the proposed algorithm provides state-of-the-art performance in terms of compu-
tational accuracy and CPU time.

Key words. nonnegative matrix factorization, nonnegative least squares, rank-k residue itera-
tion, block coordinate descent method
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1. Introduction. Nonnegative matrix factorization (NMF) [34], which performs
a constrained low-rank approximation of a matrix, is a commonly used effective
method for data dimensionality reduction and other related tasks. Given A \in \BbbR m\times n

and a desired low-rank r < min\{ m,n\} for approximation, NMF aims at finding two
low-rank nonnegative matrices U\ast \in \BbbR m\times r and V \ast \in \BbbR n\times r such that

(1.1) (U\ast , V \ast ) = arg\{ min \| A - UV T \| 2F , U \in \BbbR m\times r, V \in \BbbR n\times r, U \geq 0, V \geq 0\} ,

where X \geq 0 means that all elements of a matrix X are nonnegative. The NMF
problem was first proposed in [41] as positive matrix factorization and popularized
due to [34]. By now it has become a powerful tool for data dimensionality reduction
and has found important applications in many fields such as clustering [10, 30, 32, 38,
14, 19, 16], data mining [43, 52, 13], signal processing [5], computer vision [2, 22, 18],
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1452 D. CHU, W. SHI, S. ESWAR, AND H. PARK

bioinformatics [4, 11, 24], blind source separation [9], topic modeling [15, 52, 31, 43],
spectral data analysis [42], and many others.

NMF problem (1.1) has been studied extensively, and many numerical meth-
ods are currently available. Some of the successful methods alternatingly compute
the unknown low-rank factors U and V iteratively, partitioning the unknowns (U ,
V ) into two blocks. These existing methods include the projected gradient method
[36, 54], the interior point method [39], the projected quasi-Newton method [23, 53],
the active-set method [3, 48, 25, 33], the active-set-like method [28, 29], and the al-
ternating nonnegative least squares based on block principal pivoting (ANLS-BPP)
method [29]. There also exist many variants of NMF (1.1) that add constraints and/or
penalty terms on U and V for better interpretation and representation of the charac-
teristics of the tasks [1, 50] including sparse NMF [9, 46, 24], orthogonal NMF [35],
semi-NMF [44], joint NMF [14], nonnegative tensor factorization [7, 9, 26, 27, 45],
manifold NMF [51], kernel NMF [55], regularized NMF [46, 49], symmetric NMF
[20, 47, 32], integer constrained NMF [12], and so on. A comprehensive review of
solving NMF can be found in [27, 50]. Some other NMF algorithms that compute the
solution by partitioning the unknowns into vector blocks include the multiplicative
updates method [34] and the hierarchical alternating least squares (HALS) method
[7, 8, 9] (which is also called the rank-1 residue iteration (RRI) [21]). More recently,
random shuffling [6] and randomized sampling techniques [17] were used to accelerate
HALS/RRI, respectively.

In [27], it has been shown that most existing NMF algorithms can be explained
using the block coordinate descent (BCD) framework. Among the BCD framework-
based algorithms, the ANLS-BPP method [29] and HALS/RRI method [7, 8, 9, 21]
have been shown to be the most effective in most situations [27]. A rank-2 residue iter-
ation method (RTRI) is proposed, which is similar to HALS/RRI. In these methods,
all subproblems that the NMF algorithm encounters are nonnegativity-constrained
least squares with a matrix with one column in case of HALS/RRI or a matrix with
two columns in case of RTRI.

In this paper, we establish a new framework for computing NMF where the low-
rank factors U and V are partitioned into blocks where each block consists k columns
where k can be any integer with 1 \leq k \leq r. We also present a recursive formula for the
solution of the rank-k nonnegativity-constrained least squares (NLS). This recursive
formula can be used to derive the closed-form solution of the rank-k NLS problem for
any integer k \geq 1. As a result, we provide a framework called ARkNLS (alternating
rank-k nonnegative least squares) for NMF. Based on the framework with k = 3, we
present a new algorithm for NMF via the closed-form solution for the rank-3 NLS
problem. When k = 1 our framework produces the HALS/RRI. When k = r, the
framework can be reduced to the alternating NLS method, where the subproblems
can be solved using the closed-form solution based on recursion. However, as will be
seen in the next section, as k becomes larger, the recursion for the closed-form solution
gets significantly complicated, incurring high computational demand. Accordingly, we
conclude that computation of the NMF based on ARkNLS stays efficient when k is
relatively small, such as k = 1, 2, or 3, and for larger k, methods like ANLS-BPP are
much more efficient.

In the BCD-based methods, the matrices that appear in all NLS subproblems
are assumed to have full rank. In case any of these is rank deficient, it then requires
a special remedy. In this paper, we will call this problem the singularity problem.
It is well known that the closed-form solution of the rank-k NLS problem may run
into a singularity problem in the HALS/RRI. Typically some small values are added
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ARkNLS FOR NONNEGATIVE MATRIX FACTORIZATION 1453

to avoid zero columns in a NLS subproblem in HALS, but numerically the solution
produced by HALS/RRI has been known to be very sensitive to this small value. In
order to solve this singularity problem, in [37], instead of using the cyclic strategy of
updating two adjacent columns in U or V , two columns of U which most violate the
optimality conditions are selected in terms of the reduced gradients

H\rho (U) := U - [U - \rho (UV TV  - AV )]+, H\rho (V ) := V  - [V  - \rho (V  - \rho (V UTU - ATU)]+

as follows: let

h =
\bigl[ 
\| H\rho (U)(:, 1)\| 2 \cdot \cdot \cdot H\rho (U)(:, r)\| 2

\bigr] 
,

set (\^h, s) = max(h), h(s) = 0, and (\~h, t) = max(h); then vs and vt are updated.
For the details we refer to [37]. However, theoretically this new strategy cannot
completely overcome the singularity problem, since [ us ut ] or [ vs vt ] can still
be rank deficient in some stage of iterations. In addition, a parameter 0 < \rho \leq 1 is
involved. It is not clear how this \rho can be selected appropriately and how it affects
the computed results since indices s and t depend on the value of this parameter \rho .
Moreover, the idea used in [37] cannot be used to develop methods for NMF based
on the rank-k residue iteration for k \geq 3. We present a new strategy that efficiently
overcomes the potential singularity problem within the context of NMF computation
for k = 1, 2, or 3.

Some notations and definition used in this paper are as follows. An NLS problem
where the coefficient matrix has k columns and is of full rank will be called rank-k
NLS. A lowercase letter, such as x, denotes a scalar; a boldface lowercase letter, such
as x, denotes a vector; a boldface uppercase, such asX, denotes a matrix. For a matrix
X, X(i, :), X(:, j), and X(i, j) denote its ith row, jth column, and (i, j)th element of
X, respectively. We also let x(i) denote the ith element of x. For simplicity, X \geq 0
indicates that all the elements of X are nonnegative, [X]+ = max\{ X,0\} , and det(X)
is the determinant of X.

This paper is organized as follows. In section 2 the ARkNLS framework for NMF
is developed. The recursive formula for rank-k NLS problem is established in section
3. Then in section 4, this framework with k = 3 is specifically highlighted which leads
to an new algorithm ARkNLS(k=3) for NMF. Numerical experiments are provided
in section 5 on some synthetic as well as real data sets to illustrate the numerical
behavior of our new algorithms compared with HALS/RRI, RTRI, and ANLS-BPP.
Finally some concluding remarks are given in section 6.

2. ARkNLS: A rank-\bfitk NLS-based NMF framework. In this section, we
present a framework called ARkNLS for NMF (1.1). ARkNLS represents a set of
BCD methods for NMF where a block consists of k columns of U or k columns of V .
Specifically, for NMF (1.1), suppose U \in \BbbR m\times r and V \in \BbbR n\times r are partitioned into q
blocks each as follows:

U =
\bigl[ 
U1 \cdot \cdot \cdot Uq

\bigr] 
, V =

\bigl[ 
V1 \cdot \cdot \cdot Vq

\bigr] 
,

U1, . . . , Uq \in \BbbR m\times k, V1, . . . , Vq \in \BbbR n\times k.
(2.1)

For simplicity of discussion, let us assume that r/k = q is an integer, for now. Later,
we will show how the cases can be handled when r is not divisible by k. We have

f(U, V ) = f(U1, . . . , Uq, V1, . . . , Vq) := \| A - UV T \| 2F = \| U1V
T
1 + \cdot \cdot \cdot + UqV

T
q  - A\| 2F .
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1454 D. CHU, W. SHI, S. ESWAR, AND H. PARK

Following the BCD scheme [27], f can be minimized by iteratively solving the following
problems:
for i = 1, . . . , q,

Vi = argmin
\scrY \geq 0

f(U1, . . . , Uq, V1, . . . , Vi - 1,\scrY , Vi+1, . . . , Vq)

= argmin
\scrY \geq 0

\| Ui\scrY T  - 

\left(  A - 
\sum 
l \not =i

UlV
T
l

\right)  \| 2F
(2.2)

and for i = 1, . . . , q,

Ui = argmin
\scrY \geq 0

f(U1, . . . , Ui - 1,\scrY , Ui+1, . . . , Uq, V1, . . . , Vq)

= argmin
\scrY \geq 0

\| Vi\scrY T  - 

\left(  A - 
\sum 
l \not =i

UlV
T
l

\right)  T

\| 2F .
(2.3)

The above yields the ARkNLS framework for NMF (1.1) which is summarized in
Algorithm 2.1. The proposed ARkNLS is a general framework where we can choose
any integer k. When k = 1, it represents a 2r block BCD and is reduced to HALS/RRI.
When k = r, it represents a 2 block BCD and ANLS-BPP is one of such algorithms.

Algorithm 2.1 ARkNLS: Alternating Rank-k nonnegative least squares framework
for NMF.

1. Assume A \in \BbbR m\times n and r \leq min(m,n) are given.
Initialize U \in \BbbR m\times r and V \in \BbbR n\times r with \{ U, V \} \geq 0.
Partition as in (2.1) where each block Ui and Vi has k columns for some integer k
such that qk = r.
Normalize the columns of U .
2. Repeat
3. For i = 1, . . . , q,

update Vi by solving rank-k NLS problems (2.2)
4. For i = 1, . . . , q,

update Ui by solving rank-k NLS problems (2.3)
5. Until a stopping criterion is satisfied

The subproblems (2.2) and (2.3) are NLS with multiple right-hand sides of the
form

(2.4) min
Y\geq 0

\| GY  - B\| 2F ,

where G = Ui and B = A - 
\sum 

l \not =i UlV
T
l for i = 1, . . . , q in (2.2). Likewise G = Vi and

B = (A  - 
\sum 

l \not =i UlV
T
l )T for i = 1, . . . , q in (2.3). Therefore, an NLS with multiple

right-hand-side vectors (2.4) is the core problem in ARkNLS, which is our focus in
this section.

As illustrated in the following theorem, a significant aspect of the ARkNLS frame-
work is that the NLS (2.4) and, accordingly, the subproblems (2.2) and (2.3), have
closed-form solutions.

Theorem 2.1. Assume that B \in \BbbR m\times n, G \in \BbbR m\times k, and gk+1 \in \BbbR m are given,
where rank(G) = k and rank([ G gk+1 ]) = k + 1. Denote the unique solution of
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the rank-k NLS problem (2.4) by S(G,B) \in \BbbR k\times n. Then the unique solution of the
rank-(k + 1) NLS problem\biggl[ 

Y  \star 

y \star 
k+1

\biggr] 
= arg min

Y\geq 0,\bfy k+1\geq 0
\| 
\bigl[ 
G gk+1

\bigr] \biggl[ Y
yk+1

\biggr] 
 - B\| 2F(2.5)

is given by\left\{   y \star 
k+1 = 1

\| \bfg k+1\| 2

\Bigl[ 
gT
k+1

\Bigl( 
B  - G \cdot S

\Bigl( 
G - \bfg k+1\bfg 

T
k+1

\| \bfg k+1\| 2 G,B  - \bfg k+1\bfg 
T
k+1

\| \bfg k+1\| 2 B
\Bigr) \Bigr) \Bigr] 

+
\in \BbbR 1\times n,

Y  \star = S(G,B  - gk+1y
\ast 
k+1).

Proof. Theorem 2.1 follows trivially from Theorem 3.1 which is proved in the next
section.

Theorem 2.1 enables us to derive the closed-form solution of the rank-k NLS prob-
lem (2.4) and accordingly for the subproblems (2.2) and (2.3). In addition, according
to Theorem 1 in [27], which characterizes the convergence property of the BCD scheme
for NMF, the convergence property of ARkNLS can be stated as follows.

Theorem 2.2. If Ui and Vi, for i = 1, . . . , q, are of full column rank throughout
all the iterations and the unique minimums in (2.2) and (2.3) are attained at each
updating step, every limit point of the sequence \{ (U, V )(i)\} generated by ARkNLS
algorithm is a stationary point of the NMF (1.1). Note that this uniqueness condition
is not needed when k = r, i.e., q = 1.

It is important to note that for the above theorem to be applicable, we need to
have a unique solution for each subproblem when q > 2 [33]. When any Ui or Vi is
rank deficient, then the uniqueness of the solution will be violated, and therefore, the
above theorem cannot be applied for proof of convergence to a stationary point. In
case of HALS, q = r, and the uniqueness of the solution for all subproblems cannot be
guaranteed when a block Ui or Vi (in case of HALS, these will consist of one vector)
becomes rank deficient (zero vectors). For NMF algorithms based on the BCD scheme
with 2 blocks like ANLS-BPP (where updates are alternated between blocks U and
V ), the uniqueness is not required and the convergence result of the above theorem is
applicable. However, in case of NMF, due to the nonuniqueness of the NMF solution
(U\ast , V \ast ), we can modify the subproblems so that the subproblems are always of full
rank and therefore, the solution for NLS is unique. More detailed discussions are
presented in subsection 4.2.

3. Recursive formula for the solution of the rank-\bfitk NLS problem. Prob-
lem (2.4) can be decoupled into independent NLS problems with single right-hand side
vector as

min
Y (:,j)\in \BbbR k\times 1,Y (:,j)\geq 0

\| GY (:, j) - B(: j)\| 2F .

Accordingly, in order to derive the closed-form solution of the rank-k NLS problem
(2.4) (and so problems (2.2) and (2.3)), we first establish the recursive formula for
the solution of the following rank-k NLS problem:

min
\bfy \geq \bfzero 

\| Gy  - b\| ,(3.1)

where b \in \BbbR m, G \in \BbbR m\times k, and rank(G) = k.
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Lemma 1. Given a continuous and convex function f(z), and two nonempty
closed convex sets \scrT and \scrC satisfying \scrT \cap \scrC \not = \emptyset , assume

\widetilde z = argmin
\bfz \in \scrT 

f(z),

and \widetilde z is finite. Assume further that the constrained optimization problem

min
\bfz \in \scrT \cap \scrC 

f(z)(3.2)

has a finite solution.
(1) If \widetilde z \in \scrC , then z\ast = \widetilde z = argmin\bfz \in \scrT \cap \scrC f(z).
(2) If \widetilde z /\in \scrC , then there exists a z\ast \in \scrT \cap \scrC edge satisfying z\ast = argmin\bfz \in \scrT \cap \scrC f(z),
where \scrC edge denotes the boundary of \scrC .

Proof. Part (1) is obvious. In the following we prove part (2).
Let \widehat z \in \scrT \cap \scrC be finite and

(3.3) \widehat z = argmin
\scrT \cap \scrC 

f(z).

It is clear that part (2) follows with z\ast = \widehat z if \widehat z \in \scrT \cap \scrC edge. Otherwise, suppose that\widehat z \in \scrT \cap \scrC int, where \scrC int is the interior of \scrC . Note that \widetilde z /\in \scrC , \widetilde z \in \scrT and \widehat z \in \scrT \cap \scrC int.
Therefore, there exists z\ast \in \scrT \cap \scrC edge such that for some t \in (0, 1), we have

z\ast = (1 - t)\widetilde z+ t\widehat z \in \scrT \cap \scrC edge.

Furthermore, f(\widetilde z) \leq f(\widehat z). Hence, f(z\ast ) \leq (1 - t)f(\widetilde z)+ tf(\widehat z) \leq (1 - t)f(\widehat z)+ tf(\widehat z) =
f(\widehat z), which with (3.3) yields that f(z\ast ) = f(\widehat z) and z\ast = argmin\bfz \in \scrT \cap \scrC f(z).

Lemma 2. Assume G \in \BbbR m\times k, rank(G) = k, and b \in \BbbR m. Then the solution of
the rank-k NLS problem (3.1) is unique.

Proof. The proof is trivial and we refer it to [33].

Now, we establish the recursive formula for the solution of the rank-k NLS problem
(3.1).

Theorem 3.1. Assume G \in \BbbR m\times k, gk+1 \in \BbbR m, b \in \BbbR m are given, where G and
[ G gk+1 ] are of full column rank. Denote the unique solution of the rank-k NLS
problem (3.1) by s(G,b) \in \BbbR k. Then the unique solution of the rank-(k + 1) NLS
problem \biggl[ 

y \star 

y \star k+1

\biggr] 
= arg min

\bfy \geq \bfzero ,yk+1\geq 0
\| 
\bigl[ 
G gk+1

\bigr] \biggl[ y
yk+1

\biggr] 
 - b\| (3.4)

is given by\left\{   y \star k+1 = 1
\| \bfg k+1\| 2

\Bigl[ 
gT
k+1

\Bigl( 
b - G \cdot s

\Bigl( 
G - \bfg k+1\bfg 

T
k+1

\| \bfg k+1\| 2 G,b - \bfg k+1\bfg 
T
k+1

\| \bfg k+1\| 2 b
\Bigr) \Bigr) \Bigr] 

+
,

y \star = s(G,b - gk+1y
\ast 
k+1).

Proof. First let us consider the optimization problem\biggl[ \widetilde y\widetilde yk+1

\biggr] 
= arg min

\bfy \geq \bfzero ,yk+1\in \BbbR 
\| 
\bigl[ 
G gk+1

\bigr] \biggl[ y
yk+1

\biggr] 
 - b\| .(3.5)
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For any given y, the solution yk+1 to the optimization problem

min
yk+1\in \BbbR 

\| gk+1yk+1  - (b - Gy)\| 

is uniquely given by

(3.6) yk+1 =
gT
k+1(b - Gy)

\| gk+1\| 2
.

Accordingly, the optimization problem (3.5) can be reduced to

\widetilde y = argmin
\bfy \geq \bfzero 

\| (Gy + gk+1

gT
k+1(b - Gy)

\| gk+1\| 2
) - b\| = argmin

\bfy \geq \bfzero 
\| \widetilde Gy  - \widetilde b\| ,(3.7)

where \widetilde b = b - 
gk+1g

T
k+1

\| gk+1\| 2
b, \widetilde G = G - 

gk+1g
T
k+1

\| gk+1\| 2
G.

Moreover, it holds that

k+1 = rank
\bigl( \bigl[ 

G gk+1

\bigr] \bigr) 
= rank(gk+1)+rank

\Biggl( \Biggl( 
I  - 

gk+1g
T
k+1

\| gk+1\| 2

\Biggr) 
G

\Biggr) 
= 1+rank( \widetilde G),

i.e., rank( \widetilde G) = k and \widetilde G is of full column rank. Note that according to our notation
we have

s( \widetilde G, \widetilde b) = \widetilde y = argmin
\bfy \geq \bfzero 

\| \widetilde Gy  - \widetilde b\| ;
thus, it follows from (3.6) that

(3.8) \widetilde yk+1 =
gT
k+1(b - G\widetilde y)
\| gk+1\| 2

=
gT
k+1(b - G \cdot s( \widetilde G, \widetilde b))

\| gk+1\| 2
.

Consequently, the optimization problem (3.5) becomes

\widetilde y = argmin
\bfy \geq \bfzero 

\| Gy  - (b - gk+1\widetilde yk+1)\| ,

which, according to our notation again, can be rewritten as

(3.9) \widetilde y = s(G,b - gk+1\widetilde yk+1).

Let

\scrT :=

\biggl\{ \biggl[ 
y

yk+1

\biggr] 
| y \in \BbbR k, y \geq 0

\biggr\} 
, \scrC :=

\biggl\{ \biggl[ 
y

yk+1

\biggr] 
| y \in \BbbR k, y \geq 0, yk+1 \geq 0

\biggr\} 
.

By Lemma 1, (3.8), and (3.9),
\bullet if \widetilde yk+1 \geq 0, then \biggl[ 

y \star 

y \star k+1

\biggr] 
with

y\ast k+1 = \widetilde yk+1 =
gT
k+1(b - G \cdot s( \widetilde G, \widetilde b))

\| gk+1\| 2
=

[gT
k+1(b - G \cdot s( \widetilde G, \widetilde b))]+

\| gk+1\| 2
,

y \star = \widetilde y = s(G,b - gk+1\widetilde yk+1) = s(G,b - gk+1y
\ast 
k+1)

is the unique solution of the problem (3.4);
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1458 D. CHU, W. SHI, S. ESWAR, AND H. PARK

\bullet if \widetilde yk+1 < 0, then the unique solution yk+1 of the problem (3.4) is

y \star k+1 = 0 = [\widetilde yk+1]+ =
[gT

k+1(b - G \cdot s( \widetilde G, \widetilde b))]+
\| gk+1\| 2

,

and consequently, the unique solution y of the problem (3.4) is given by

y \star = argmin
\bfy \geq 0

\| Gy  - b\| = argmin
\bfy \geq 0

\| Gy  - (b - gk+1y
 \star 
k+1)\| ,

which yields that
y \star = s(G,b - gk+1y

\ast 
k+1).

Theorem 3.1 can be used to derive the closed-form solution of the rank-k NLS
problem (3.1) for any integer k \geq 1. We derive the closed-form solutions of the rank-2
NLS and rank-3 NLS (without recursion) in the following two corollaries.

Corollary 3.2. Assume that G = [ g1 g2 ] \in \BbbR m\times 2 and rank(G) = 2. Then
the unique solution of the rank-2 NLS problem\biggl[ 

y\ast 1
y\ast 2

\biggr] 
= argmin

\bfy \geq 0
\| Gy  - b\| = arg min

\{ y1,y2\} \geq 0
\| y1g1 + y2g2  - b\| (3.10)

is given by \left\{     y\ast 2 = 1
\| \bfg 2\| 2

\biggl[ 
bTg2  - gT

2 g1

\Bigl[ 
\| \bfg 2\| 2\bfb T \bfg 1 - \bfb T \bfg 2\cdot \bfg T

2 \bfg 1

\| \bfg 1\| 2\| \bfg 2\| 2 - (\bfg T
1 \bfg 2)2

\Bigr] 
+

\biggr] 
+

y\ast 1 = 1
\| \bfg 1\| 2 [b

Tg1  - (gT
2 g1)y

\ast 
2 ]+.

(3.11)

Proof. Since the solution of the rank-1 NLS problem miny1\geq 0 \| y1g1  - b\| is given

by s(g1,b) =
[\bfg T

1 \bfb ]+
\| \bfg 1\| 2 , according to Theorem 3.1, the solution y\ast 2 to the rank-2 NLS

problem (3.10) is

y\ast 2 =

\bigl[ 
gT
2 (b - g1 \cdot s(g1  - \bfg 2\bfg 

T
2

\| \bfg 2\| 2g1,b - \bfg 2\bfg 
T
2

\| \bfg 2\| 2b)
\bigr] 
+

\| g2\| 2
.

Since

s

\biggl( 
g1  - 

g2g
T
2

\| g2\| 2
g1,b - g2g

T
2

\| g2\| 2
b

\biggr) 
=

\bigl[ \bigl( 
g1  - g2

\bfg T
2 \bfg 1

\| \bfg 2\| 2

\bigr) T \bigl( 
b - g2

\bfg T
2 \bfb 

\| \bfg 2\| 2

\bigr) \bigr] 
+\bigm\| \bigm\| \bigm\| g1  - g2

\bfg T
2 \bfg 1

\| \bfg 2\| 2

\bigm\| \bigm\| \bigm\| 2
=

\bigl[ 
\| g2\| 2bTg1  - bTg2 \cdot gT

2 g1

\bigr] 
+

\| g1\| 2\| g2\| 2  - (gT
1 g2)2

,

(3.11) holds.

Corollary 3.3. Assume that G = [ g1 g2 g\bfthree ] \in \BbbR m\times 3 and rank(G) = 3.
Then the unique solution of the rank-3 NLS problem\left[  y\ast 1

y\ast 2
y\ast 3

\right]  = argmin
\bfy \geq 0

\| Gy  - b\| = arg min
\{ y1,y2,y3\} \geq 0

\| y1g1 + y2g2 + y3g3  - b\| 

is given by

D
ow

nl
oa

de
d 

01
/0

6/
24

 to
 7

3.
21

0.
18

7.
80

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ARkNLS FOR NONNEGATIVE MATRIX FACTORIZATION 1459

\left\{                 

y\ast 3 = 1
\| \bfg 3\| 2 [b

Tg3  - (gT
3 g2)p - (gT

3 g1)\widetilde p]+
y\ast 2 = 1

\| \bfg 2\| 2

\biggl[ 
bTg2  - (gT

3 g2)y
\ast 
3

 - gT
2 g1

\bigl[ (\bfb T \bfg 1\| \bfg 2\| 2 - \bfb T \bfg 2\cdot \bfg T
2 \bfg 1) - (\bfg T

3 \bfg 1\| \bfg 2\| 2 - \bfg T
3 \bfg 2\cdot \bfg T

2 \bfg 1)y
\ast 
3

\| \bfg 1\| 2\| \bfg 2\| 2 - (\bfg T
2 \bfg 1)2

\bigr] 
+

\biggr] 
+

y\ast 1 = 1
\| \bfg 1\| 2 [b

Tg1  - (gT
3 g1)y

\ast 
3  - (gT

2 g1)y
\ast 
2 ]+,

(3.12)

where

p =

\biggl[ 
bTg2 \cdot \| g3\| 2  - bTg3 \cdot gT

3 g2

\| g2\| 2\| g3\| 2  - (gT
3 g2)2

 - gT
2 g1 \cdot \| g3\| 2  - gT

3 g2 \cdot gT
3 g1

\| g2\| 2\| g3\| 2  - (gT
3 g2)2

\biggl[ 
det([b,g2,g3]

TG)

det(GTG)

\biggr] 
+

\Biggr] 
+

and

\widetilde p =

\biggl[ 
bTg1 \cdot \| g3\| 2  - bTg3 \cdot gT

3 g1

\| g1\| 2\| g3\| 2  - (gT
3 g1)2

 - gT
2 g1 \cdot \| g3\| 2  - gT

3 g2 \cdot gT
3 g1

\| g1\| 2\| g3\| 2  - (gT
3 g1)2

p

\biggr] 
+

.

Proof. The proof is similar to Corollary 3.2 and can be found in Appendix A.

4. ARkNLS with \bfitk = 3. Based on Theorem 2.1 and Colloraries 3.2 and 3.3,
ARkNLS with k = 2 and k = 3 can produce practical numerical methods for NMF.
Although there is a closed-form solution for the rank-k NLS problem for any k in-
cluding when k \geq 4, expansion of recursion to obtain a closed-form solution itself
gets very complicated, and the closed-form solution becomes computationally messy.
Therefore, we will focus on ARkNLS with k = 3 in the rest of the paper since the
k = 2 case can be easily derived in a similar way. In addition, we will propose methods
for handling the possible singularity problem for k = 1, 2, and 3.

In the following the closed-form solution of the rank-k NLS problem (2.2) with
k = 3 is derived first, and then a strategy for avoiding rank deficient rank-k NLS
in NMF iteration is provided. Finally these closed-form solutions and the proposed
strategy lead to the efficient algorithm ARkNLS(k=3).

4.1. The closed-form solution of the rank-\bfitk NLS problem (2.2) with
\bfitk = 3. In this subsection, we derive an efficient algorithm to solve the rank-k NLS
problem (2.2) (solving the problem (2.3) will be analogous) with k = 3. The efficient
algorithm is derived generalizing the result presented in Corollary 3.3 to the case of
NLS with multiple right-hand-side vectors which are (A - \Sigma l \not =iUlV

T
l ) in problem (2.2)

(and (A - \Sigma l \not =iUlV
T
l )T in problem (2.3)) and exploiting the special structure of these

multiple right-hand-side vectors, so that redundant computations are identified and
avoided.

Assume q = r/3 is an integer, and partition U and V into q blocks as follows:

U =
\bigl[ 
U1 \cdot \cdot \cdot Uq

\bigr] 
, V =

\bigl[ 
V1 \cdot \cdot \cdot Vq

\bigr] 
,

U1, . . . , Uq \in \BbbR m\times 3, V1, . . . , Vq \in \BbbR n\times 3.

For notational simplicity, we denote the three columns of the ith blocks Ui and Vi as
follows, respectively, without additional subscripts that correspond to the columns of
U and V :

Ui =
\bigl[ 
u1 u2 u3

\bigr] 
and Vi =

\bigl[ 
v1 v2 v3

\bigr] 
.
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Theorem 4.1. Assume Ui \in \BbbR m\times 3 and rank(Ui) = 3. Then the unique solution
of the rank-3 NLS problem

V \ast 
i =

\bigl[ 
v\ast 
1 v\ast 

2 v\ast 
3

\bigr] 
= arg min

Vi\in Rn\times 3,Vi\geq \bfzero 
\| UiV

T
i  - (A - \Sigma l \not =iUlV

T
l )\| 2F(4.1)

is given by \left\{         
v\ast 
3 =

\Bigl[ 
v3 +

\bfr 3
\| \bfu 3\| 2 +

\bfu T
3 \bfu 1

\| \bfu 3\| 2 (v1  - \widetilde p) + \bfu T
3 \bfu 2

\| \bfu 3\| 2 (v2  - p)
\Bigr] 
+
,

v\ast 
2 =

\Bigl[ 
v2 +

\bfr 2
\| \bfu 2\| 2 +

\bfu T
2 \bfu 1

\| \bfu 2\| 2 (v1  - z) +
\bfu T

3 \bfu 2

\| \bfu 2\| 2 (v3  - v\ast 
3)
\Bigr] 
+
,

v\ast 
1 =

\Bigl[ 
v1 +

\bfr 1
\| \bfu 1\| 2 +

\bfu T
2 \bfu 1

\| \bfu 1\| 2 (v2  - v\ast 
2) +

\bfu T
3 \bfu 1

\| \bfu 1\| 2 (v3  - v\ast 
3)
\Bigr] 
+
,

(4.2)

where \bigl[ 
r1 r2 r3

\bigr] 
= ATUi  - V UTUi,(4.3)

a = uT
2 u1 \cdot \| u3\| 2  - uT

3 u2 \cdot uT
3 u1,(4.4)

b = uT
3 u1 \cdot \| u2\| 2  - uT

3 u2 \cdot uT
2 u1,(4.5)

d12 = \| u1\| 2\| u2\| 2  - (uT
2 u1)

2,(4.6)

d13 = \| u1\| 2\| u3\| 2  - (uT
3 u1)

2,(4.7)

d23 = \| u2\| 2\| u3\| 2  - (uT
3 u2)

2,(4.8)

p=

\Biggl[ 
v2 +

\| u3\| 2r2  - uT
3 u2 \cdot r3

d23
+

a

d23

\Biggl( 
v1  - 

\biggl[ 
d23r1  - ar2  - br3

det(UT
i Ui)

+v1

\biggr] 
+

\Biggr) \Biggr] 
+

,(4.9)

\widetilde p =

\biggl[ 
v1 +

\| u3\| 2r1  - uT
3 u1 \cdot r3

d13
+

a

d13
(v2  - p)

\biggr] 
+

,(4.10)

z =

\biggl[ 
v1 +

\| u2\| 2r1  - uT
2 u1 \cdot r2

d12
+

b

d12
(v3  - v\ast 

3)

\biggr] 
+

.(4.11)

Proof. Recall that

A - \Sigma l \not =iUlV
T
l = A - UV T + UiV

T
i .

Then we have

(A - UV T + UiV
T
i )Tu1 = ATu1  - V UTu1 + \| u1\| 2v1(4.12)

+ uT
2 u1 \cdot v2 + uT

3 u1 \cdot v3

= r1 + \| u1\| 2v1 + uT
2 u1 \cdot v2 + uT

3 u1 \cdot v3,

(A - UV T + UiV
T
i )Tu2 = r2 + uT

2 u1 \cdot v1 + \| u2\| 2v2 + uT
3 u2 \cdot v3,(4.13)

(A - UV T + UiV
T
i )Tu3 = r3 + uT

3 u1 \cdot v1 + uT
3 u2 \cdot v2 + \| u3\| 2v3,(4.14)

where ri for i = 1, 2, 3 are defined in (4.3). In addition,

(A - UV T + UiV
T
i )Tu2 \cdot \| u3\| 2  - (A - UV T + UiV

T
i )Tu3 \cdot uT

3 u2(4.15)

= \| u3\| 2r2  - uT
3 u2r3 + uT

2 u1\| u3\| 2 \cdot v1

+ \| u2\| 2\| u3\| 2 \cdot v2 + uT
3 u2\| u3\| 2 \cdot v3

 - uT
3 u1 \cdot uT

3 u2 \cdot v1  - (uT
3 u2)

2v2  - \| u3\| 2uT
3 u2 \cdot v3
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= \| u3\| 2r2  - uT
3 u2r3 + (uT

2 u1\| u3\| 2  - uT
3 u1 \cdot uT

3 u2)v1

+ (\| u2\| 2\| u3\| 2  - (uT
3 u2)

2)v2

= d23v2 + \| u3\| 2r2  - uT
3 u2r3 + av1,

(A - UV T + UiV
T
i )Tu1 \cdot \| u3\| 2  - (A - UV T + UiV

T
i )Tu3 \cdot uT

3 u1(4.16)

= d13v1 + \| u3\| 2r1  - uT
3 u1r3 + av2,

(A - UV T + UiV
T
i )Tu1\| u2\| 2  - (A - UV T + UiV

T
i )Tu2 \cdot uT

2 u1(4.17)

= d12v1 + \| u2\| 2r1  - uT
2 u1r2 + bv3,

(A - UV T + UiV
T
i )Tu1 \cdot d23  - (A - UV T + UiV

T
i )Tu2 \cdot a(4.18)

 - (A - UV T + UiVi)
Tu3 \cdot b

= d23r1  - ar2  - br3 + det
\bigl( 
UT
i Ui

\bigr) 
v1,

where a, b, d23, d13, and d12 are defined in (4.4)--(4.6). Also from (4.12)--(4.18), we
have

\bfp =

\Biggl[ 
(A  - UV T + UiV

T
i )T\bfu 2 \cdot \| \bfu 3\| 2  - (A  - UV T + UiV

T
i )T\bfu 3 \cdot \bfu T

3 \bfu 2

d23

 - 
a

d23

\Biggl[ 
(A - UV T +UiV

T
i )T\bfu 1 \cdot d23  - (A - UV T +UiV

T
i )T\bfu 2 \cdot a - (A - UV T +UiV

T
i )T\bfu 3 \cdot b

det(UT
i Ui)

\Biggr] 
+

\right]  
+

=

\Biggl[ 
\bfv 2 +

\| \bfu 3\| 2\bfr 2  - \bfu T
3 \bfu 2 \cdot \bfr 3

d23

+
a

d23

\Biggl( 
\bfv 1  - 

\biggl[ 
d23\bfr 1  - a\bfr 2  - b\bfr 3

det(UT
i Ui)

+ \bfv 1

\biggr] 
+

\Biggr) \Biggr] 
+

,

\widetilde \bfp =

\Biggl[ 
(A  - UV T + UiV

T
i )T\bfu 1 \cdot \| \bfu 3\| 2  - (A  - UV T + UiV

T
i )T\bfu 3 \cdot \bfu T

3 \bfu 1

d13

 - 
a

d13

\bfp 

\Biggr] 
+

=

\Biggl[ 
\bfv 1 +

\| \bfu 3\| 2\bfr 1  - \bfu T
3 \bfu 1 \cdot \bfr 3

d13

+
a

d13

(\bfv 2  - \bfp )

\Biggr] 
+

.

Then, according to Corollary 3.3, the solution v\ast 
3 of problem (2.2) is

v\ast 
3 =

1

\| u3\| 2
[(A - UV T + UiV

T
i )Tu3  - (uT

3 u1)\widetilde p - (uT
3 u2)p]+

=

\biggl[ 
v3 +

r3
\| u3\| 2

+
uT
3 u1

\| u3\| 2
(v1  - \widetilde p) + uT

3 u2

\| u3\| 2
(v2  - p)

\biggr] 
+

.

Furthermore, letting

z =

\biggl[ 
((A - UV T + UiV

T
i )Tu1\| u2\| 2  - (A - UV T + UiV

T
i )Tu2 \cdot uT

2 u1)

d12
 - b

d12
v\ast 
3

\biggr] 
+

=

\biggl[ 
v1 +

\| u2\| 2r1  - uT
2 u1 \cdot r2

d12
+

b

d12
(v3  - v\ast 

3)

\biggr] 
+

,

the solution v\ast 
2 of problem (2.2) is

v\ast 
2 =

1

\| u2\| 2
\bigl[ 
(A - UV T + UiV

T
i )Tu2  - (uT

3 u2)v
\ast 
3  - uT

2 u1z
\bigr] 
+

=

\biggl[ 
v2 +

r2
\| u2\| 2

+
uT
2 u1

\| u2\| 2
(v1  - z) +

uT
3 u2

\| u2\| 2
(v3  - v\ast 

3)

\biggr] 
+

,
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and the solution v\ast 
1 of problem (2.2) is

v\ast 
1 =

1

\| u1\| 2
[(A - UV T + UiV

T
i )Tu1  - (uT

3 u1)v
\ast 
3  - (uT

2 u1)v
\ast 
2]+

=

\biggl[ 
v1 +

r1
\| u1\| 2

+
uT
2 u1

\| u1\| 2
(v2  - v\ast 

2) +
uT
3 u1

\| u1\| 2
(v3  - v\ast 

3)

\biggr] 
+

.

Remark 1. Theorem 4.1 holds only when the matrix Ui has full column rank.
When rank(Ui) \not = 3, then one or more of the following values which occur in the
denominators will be zero:

\bullet \| u1\| , \| u2\| , or \| u3\| when a column of Ui is zero;
\bullet d12 = \| u1\| 2\| u3\| 2  - (uT

3 u1)
2, d13 = \| u1\| 2\| u2\| 2  - (uT

2 u1)
2, or d23 =

\| u2\| 2\| u3\| 2 - (uT
3 u2)

2 when two of the columns of Ui are linearly dependent;
\bullet det(UT

i Ui).

Any of the above cases will make some of the operations not valid. In the next
subsection, we propose a remedy to handle these cases.

Remark 2. Theorem 4.1 is based on the assumption that r/3 is an integer. If r/3
is not an integer, the following methods can be used. Let q = [ r3 ], and denote\left\{           

V =
\Bigl[ 
v1 \cdot \cdot \cdot vr

\Bigr] 
=
\Bigl[ 
V1 \cdot \cdot \cdot Vq vr

\Bigr] 
,

V1, . . . , Vq \in \BbbR n\times 3 if r = 3q + 1,

V =
\Bigl[ 
v1 \cdot \cdot \cdot vr

\Bigr] 
=
\Bigl[ 
V1 \cdot \cdot \cdot Vq vr - 1 vr

\Bigr] 
,

V1, . . . , Vq \in \BbbR n\times 3 if r = 3q + 2,

where [x] means the nearest integer less than or equal to x. Then V1, . . . , Vq are
computed by Theorem 4.1. For the computation of vr when r = 3q + 1 or vr - 1 and
vr, there are two choices:

(a) Let
Vq+1 =

\bigl[ 
vr - 2 vr - 1 vr

\bigr] 
.

Then Vq+1 is computed by Theorem 4.1.
(b) vr is computed by HALS/RRI when r = 3q+1, and vr - 1 and vr are computed

when r = 3q + 2 by ARkNLS with k = 2 when r = 3q + 2.

In our implementation, we adopted the choice (a) above due to uniformness of sin-
gularity checking. However, even for choice (b), we can easily implement the proposed
method to avoid singularity which is discussed in the next section.

4.2. Avoiding rank deficient ARkNLS in NMF iteration. The low-rank
factor matrices U and V in NMF (1.1) play important roles in applications. For
example, in the blind source separation, the matrix A stands for the observation
matrix, the matrix U plays the role of mixing matrix, and the matrix V expresses
source signals. In topic modeling [15], where A is a term-document matrix, the
normalized columns of U can be interpreted as topics, and the corresponding columns
of V provide the topic distribution for the documents. If the matrix V has zero
columns, this implies that some of source signals may be lost through the process. In
addition, if any of the columns of these factor matrices are computed as zeros, then
not only does the interpretation of the result become difficult but also the computed
reduced rank becomes lower than the prespecified reduced rank r which may make the
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approximation less accurate. More importantly, ARkNLS iteration assumes that the
matrix Ui or Vi that plays the role of the coefficient matrix in each iteration of NLS has
full column rank, and when this is not the case, the algorithm will break down. Hence
this singularity problem must be overcome for more meaningful solutions as well as
for more robust algorithms. This situation is well known especially in HALS/RRI for
NMF (1.1) which is based on the RRI method where a typical problem of NLS is

(4.19) min
\bfv i\in \BbbR n\times 1,\bfv i\geq \bfzero 

\| uiv
T
i  - (A - \Sigma l \not =iulv

T
l )\| 2F .

The optimal solution vector vi is given by vi =
[(A - \Sigma l\not =i\bfu l\bfv 

T
l )T\bfu i]+

\| \bfu i\| 2 , and thus it will

be zero if (A - \Sigma l \not =iulv
T
l )

Tui \leq 0, and when this zero vector becomes the coefficient
matrix in a later step, the iteration will break down. When k \geq 1, due to an analogous
rank deficiency of the coefficient matrix Ui or Vi, the results in Theorem 4.1 cannot
be applied to solve the NLS problem (2.2). When the NLS problem in the ARkNLS
context involves a rank deficient matrix, there is a singularity problem.

Fortunately, in the context of NMF, we can modify the involved NLS problem
during rank-k NLS iteration to avoid such a singularity problem. This is achieved by
adjusting the columns of Ui and Vi such that the ``new"" Ui and Vi satisfy that Ui is
of full column rank and that the value of

UiV
T
i = u1v

T
1 + u2v

T
2 + u3v

T
3

remains unchanged. The proposed adjustment is motivated by the monotonicity prop-
erty of our algorithm ARkNLS with k = 3. Denote the new Ui and Vi by \scrU i and \scrV i,
respectively, satisfying UiVi = \scrU i\scrV i. Define \scrV \ast 

i as

\scrV \ast 
i = arg min

\scrV \in \BbbR n\times 3,\scrV \geq \bfzero 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \scrU i\scrV T  - 

\left(  A - 
\sum 
l \not =i

UlV
T
l

\right)  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

F

.

Then we have\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \scrU i(\scrV \ast 
i )

T  - 

\left(  A - 
\sum 
l \not =i

UlV
T
l

\right)  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
F

\leq 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \scrU i\scrV T
i  - 

\left(  A - 
\sum 
l \not =i

UlV
T
l

\right)  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
F

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| UiV
T
i  - 

\left(  A - 
\sum 
l \not =i

UlV
T
l

\right)  \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
F

,

which preserves the monotonicity property of our algorithm ARkNLS with k = 3.
Assume that we are concerned with the blocks Ui and Vi in the iteration. Let

Ui =
\bigl[ 
u1 u2 u3

\bigr] 
and Vi =

\bigl[ 
v1 v2 v3

\bigr] 
.

Remark 1 in the previous subsection listed the cases when Ui is rank deficient. In the
following, we show how the factors Ui and Vi can be adjusted when Ui is rank deficient.
Here, we adjust the matrix Ui checking the linear independence of its columns from
left and right, and adjust Vi as needed.
Step (i) In the first step, if u1 = 0, then we replace this u1 with a nonzero vector

while keeping the value of u1v
T
1 unchanged. Assume u1 = 0, and so

u1v
T
1 = 0. Then set u1(3i - 2) = 1, v1 = 0. Since the first column u1 of
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Ui is the (3i - 2)th column of U , u1(3i - 2) is the (3i - 2)th element of u1.
Now elements of u1 are all zeros except it has only one nonzero element
u1(3i  - 2) = 1. Obviously, u1 \not = 0 now, and the value of u1v

T
1 + u2v

T
2 +

u3v
T
3 remains unchanged.

Step (ii) Now we have u1 \not = 0. But if u1 and u2 are linearly dependent, then we
have

u2 = \alpha u1, u1v
T
1 + u2v

T
2 = u1(v

T
1 + \alpha vT

2 ) = u1(v1 + \alpha v2)
T ,

where \alpha = \| \bfu 2\| 
\| \bfu 1\| . We set

v1 = v1 + \alpha v2, v2 = 0, and u2 = 0.(4.20)

Note that the second column u2 of Ui is the (3i  - 1)th column of U ; we
further adjust u2 to ensure u1 and u2 are linearly independent:

(4.21) if u1(3i - 2) \not = 0, set u2(3i - 1) = 1;

(4.22) otherwise, set u2(3i - 2) = 1.

Clearly, the adjusted u1 and u2 are linearly independent and u1v
T
1 +u2v

T
2

remains unchanged, and therefore u1v
T
1 +u2v

T
2 +u3v

T
3 remains unchanged.

Step (iii) Now u1 and u2 are linearly independent. Finally, if u1, u2, and u3 are
linearly dependent in the following way:

(4.23) rank(
\bigl[ 
u1 u2

\bigr] 
) = rank(

\bigl[ 
u1 u2 u3

\bigr] 
) = 2,

then we have
u3 = \widetilde \alpha u1 + \widetilde \beta u2,

where

\widetilde \alpha =
det(

\bigl[ 
u1 u2

\bigr] T \bigl[ 
u3 u2

\bigr] 
)

det(
\bigl[ 
u1 u2

\bigr] T \bigl[ 
u1 u2

\bigr] 
)

(4.24)

and

\widetilde \beta =
det(

\bigl[ 
u1 u2

\bigr] T \bigl[ 
u1 u3

\bigr] 
)

det(
\bigl[ 
u1 u2

\bigr] T \bigl[ 
u1 u2

\bigr] 
)
.(4.25)

Actually, \widetilde \alpha and \widetilde \beta cannot be both negative as u1, u2, and u3 are all nonneg-
ative, u1 \not = 0, and u2 \not = 0. But when only one of them is negative, we need
to permute the index list [ 1 2 3 ] to the list \scrI = [ \scrI (1) \scrI (2) \scrI (3) ]

and change the values of \widetilde \alpha and \widetilde \beta such that

u\scrI (3) = \widetilde \alpha u\scrI (1) + \widetilde \beta u\scrI (2), \widetilde \alpha \geq 0, \widetilde \beta \geq 0.

At the same time, u\scrI (1) and u\scrI (2) must be linearly independent. So we can
adjust v1, v2, and v3 easily, and meanwhile we only need to adjust u\scrI (3)
such that the adjusted u1, u2, and u3 are linearly independent, and the
value of UiV

T
i = u1v1 + u2v2 + u3v3 remains unchanged. The permuted

index list \scrI = [ \scrI (1) \scrI (2) \scrI (3) ] can be obtained as follows where \scrJ 
denotes the index list in the entire matrix U or V :
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-- if \widetilde \alpha \widetilde \beta \geq 0, then \widetilde \alpha \geq 0, \widetilde \beta \geq 0, and u3 = \widetilde \alpha u1 + \widetilde \beta u2. Let

\scrI =
\bigl[ 
1 2 3

\bigr] 
, \scrJ =

\bigl[ 
3i - 2 3i - 1 3i

\bigr] 
;

-- if \widetilde \alpha < 0, \widetilde \beta > 0, then u2 =  - \widetilde \alpha \widetilde \beta u1 +
1\widetilde \beta u3 with  - \widetilde \alpha \widetilde \beta > 0 and 1\widetilde \beta > 0.

Let \widetilde \alpha =  - \widetilde \alpha /\widetilde \beta > 0, \widetilde \beta = 1/\widetilde \beta > 0, \scrI =
\bigl[ 
1 3 2

\bigr] 
,

\scrJ =
\bigl[ 
3i - 2 3i 3i - 1

\bigr] 
;

-- if \widetilde \alpha > 0, \widetilde \beta < 0, then u1 =  - \widetilde \beta \widetilde \alpha u2 +
1\widetilde \alpha u3 with  - \widetilde \beta \widetilde \alpha > 0 and 1\widetilde \alpha > 0.

Let \widetilde \alpha =  - \widetilde \beta /\widetilde \alpha > 0, \widetilde \beta = 1/\widetilde \alpha > 0, \scrI =
\bigl[ 
2 3 1

\bigr] 
,

\scrJ =
\bigl[ 
3i - 1 3i 3i - 2

\bigr] 
.

Now we have

u\scrI (3) = \widetilde \alpha u\scrI (1) + \widetilde \beta u\scrI (2), \widetilde \alpha \geq 0, \widetilde \beta \geq 0,

and u\scrI (j) is the \scrJ (j)th column of U , j = 1, 2, 3. Moreover, we also have

u1v
T
1 + u2v

T
2 + u3v

T
3 = u\scrI (1)v

T
\scrI (1) + u\scrI (2)v

T
\scrI (2) + u\scrI (3)v

T
\scrI (3)

= u\scrI (1)(v\scrI (1) + \widetilde \alpha v\scrI (3))
T + u\scrI (2)(v\scrI (2) + \widetilde \beta v\scrI (3))

T .

Thus, we set

v\scrI (1) = v\scrI (1) + \widetilde \alpha v\scrI (3), v\scrI (2) = v\scrI (2) + \widetilde \beta v\scrI (3), v\scrI (3) = 0, u\scrI (3) = 0.

Then v\scrI (1) and v\scrI (2) are both nonnegative vectors, u\scrI (1) and u\scrI (2) are
linearly independent, and the value of u1v

T
1 + u2v

T
2 + u3v

T
3 remains un-

changed.
Now we adjust u\scrI (3) so that u1,u2, u3 are linearly independent and the
value of u1v

T
1 + u2v

T
2 + u3v

T
3 remains unchanged:

If u\scrI (1)(\scrJ (1))u\scrI (2)(\scrJ (2)) - u\scrI (1)(\scrJ (2))u\scrI (2)(\scrJ (1)) \not = 0,

set u\scrI (3)(\scrJ (3)) = 1;
(4.26)

(4.27) else, if u\scrI (1)(\scrJ (1)) + u\scrI (2)(\scrJ (1)) = 0, set u\scrI (3)(\scrJ (1)) = 1;

(4.28) else, if u\scrI (1)(\scrJ (1)) + u\scrI (2)(\scrJ (1)) \not = 0, set u\scrI (3)(\scrJ (2)) = 1.

Through the above three steps, Ui is of full column rank, and so Theorem 4.1 can
be applied.

4.3. Algorithm ARkNLS with \bfitk = 3. Denote

H = ATUi, M = UTU.

Note that for solving (4.1) via (4.2), only two matrix-matrix products H and M are
needed, and all of r1, r2, r3, a, b, d12, d13, and d23 can be invoked via H and M as
shown in Theorem 4.1. Moreover, the singularity problem discussed in the subsection
above can be detected via matrices H and M which will have to be computed anyway
for other parts of the computation.

In the following we illustrate the implementation of adjustment of vectors u1, u2,
and u3 first and then present algorithm ARkNLS(k=3).
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\bullet In step (i), whether u1 = 0 can be checked by checking whether uT
1 u1 =

M(3i  - 2, 3i  - 2) is zero. After u1 is adjusted, the elements of H and M
should also be adjusted:

H(:, 1) = A(3i - 2, :)T , M(:, 3i - 2) = U(3i - 2, :)T , M(3i - 2, :) = U(3i - 2, :).

\bullet In step (ii), the linear dependence of u1 and u2 can be checked by checking
whether det([ u1 u2 ]T [ u1 u2 ]) = det(M(3i - 2 : 3i - 1, 3i - 2 : 3i - 1))
is zero. Moreover,

\alpha =
\| u2\| 
\| u1\| 

=

\sqrt{} 
M(3i - 1, 3i - 1)

M(3i - 2, 3i - 2)
.

Furthermore, after u2 is adjusted, the elements of H and M should also be
adjusted:

-- Corresponding to (4.21),

H(:, 2) = A(3i - 1, :)T , M(:, 3i - 1) = U(3i - 1, :)T ,

M(3i - 1, :) = U(3i - 1, :),

-- Corresponding to (4.22),

H(:, 2) = A(3i - 2, :)T , M(:, 3i - 1) = U(3i - 2, :)T ,

M(3i - 1, :) = U(3i - 2, :).

\bullet In step (iii), the condition (4.23) can be checked from the relationship

det([ u1 u2 u3 ]T [ u1 u2 u3 ]) = det(M(3i - 2 : 3i, 3i - 2 : 3i)) = 0.

In addition,

\widetilde \alpha =
det(

\bigl[ 
u1 u2

\bigr] T \bigl[ 
u3 u2

\bigr] 
)

det(
\bigl[ 
u1 u2

\bigr] T \bigl[ 
u1 u2

\bigr] 
)

=
M(3i - 1, 3i - 1)M(3i - 2, 3i) - M(3i - 1, 3i)M(3i - 2, 3i - 1)

M(3i - 1, 3i - 1)M(3i - 2, 3i - 2) - (M(3i - 1, 3i - 2))2
,

and

\widetilde \beta =
det(

\bigl[ 
u1 u2

\bigr] T \bigl[ 
u1 u3

\bigr] 
)

det(
\bigl[ 
u1 u2

\bigr] T \bigl[ 
u1 u2

\bigr] 
)

=
M(3i - 2, 3i - 2)M(3i - 1, 3i) - M(3i - 1, 3i - 2)M(3i - 2, 3i)

M(3i - 1, 3i - 1)M(3i - 2, 3i - 2) - (M(3i - 1, 3i - 2))2
.

After u\scrI (3) is adjusted, the elements of H and M should also be adjusted:
-- Corresponding to (4.26),

H(:, \scrI (3)) = A(\scrJ (3), :)T , M(:,\scrJ (3)) = U(\scrJ (3), :)T ,

M(\scrJ (3), :) = U(\scrJ (3), :).

-- Corresponding to (4.27),

H(:, \scrI (3)) = A(\scrJ (1), :)T , M(:,\scrJ (3)) = U(\scrJ (1), :)T ,

M(\scrJ (3), :) = U(\scrJ (1), :).
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-- Corresponding to (4.28),

H(:, \scrI (3)) = A(\scrJ (2), :)T , M(:,\scrJ (3)) = U(\scrJ (2), :)T ,

M(\scrJ (3), :) = U(\scrJ (2), :).

Theorem 4.1 and discussions above lead to the algorithm ARkNLS(k=3) for NMF
problem, which is summarized in Algorithm 4.1.

4.4. Computational complexity of ARkNLS with \bfitk = 3. We briefly dis-
cuss the per iteration computational complexity of Algorithm 4.1. The matrix mul-
tiplications needed to compute M = UTU and H = ATU cost 2mr2 flops and 2mnr
flops, respectively. Adjusting the rank deficiency of U requires only \approx 6n of flops
and data movement per Ui to replace entries of M and H. Solving for Vi using The-
orem 4.1 involves calculating ATUi  - V UTUi which can be computed using H and
M using 6nr + 3n flops. Finally solving for Vi involves a constant number of vector

Algorithm 4.1 Alternating rank-3 NLS for NMF (ARkNLS(k=3)).

1. Given an m-by-n nonnegative matrix A, initialize U \in \BbbR m\times r, V \in \BbbR n\times r with
nonnegative elements and normalized the columns of U . Let q = \ttf \ttl \tto \tto \ttr ( r3 ), where
\ttf \ttl \tto \tto \ttr ( r3 ) rounds

r
3 to the nearest integer less than or equal to r

3 .
2. Repeat
3. For i = 1 : q do \% Ui =

\bigl[ 
u1 u2 u3

\bigr] 
, u1 = U(:, 3i  - 2),

u2 = U(:, 3i - 1), u3 = U(:, 3i).
\% Vi =

\bigl[ 
v1 v2 v3

\bigr] 
, v1 = V (:, 3i  - 2),

v2 = V (:, 3i - 1), v3 = V (:, 3i).
4. Adjust the columns of Ui and Vi such that the adjusted Ui is of full column rank
and the value of UiV

T
i

remains unchanged.
5. Compute Vi for (4.1) by (4.2).
6. End for
7. If \ttm \tto \ttd (r, 3) = 1 or 2 then compute vr - 2, vr - 1, vr via the above steps 4--5. End
if

\% \ttm \tto \ttd (r, 3) returns the remainder after division of
r by 3.

\% In the case \ttm \tto \ttd (r, 3) = 1, ur - 2 and ur - 1 must
be linearly independent

\% after step 5, we only need to check whether
ur - 2, ur - 1 and ur are

\% linearly independent before updating the last
three columns of V .

\% In the case \ttm \tto \ttd (r, 3) = 2, ur - 2 \not = 0 after step 5,
we only need to check

\% whether ur - 2 and ur - 1, and ur - 2, ur - 1 and ur

are linearly independent
\% before updating the last three columns of V .

8. Replace U with V and V with U , A with AT , repeat steps 3--7.
9. Until a stopping criterion is satisfied
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operations taking \approx 52n flops. These solves are updated for every Vi block giving us a
total time for updating V to be 2mnr+2mr2+ r

3 (6nr+61n) = 2mnr+O
\bigl( 
(n+m)r2

\bigr) 
.

Performing a similar analysis for updating U we get the overall per iteration compu-
tational complexity of Algorithm 4.1 to be 4mnr+O

\bigl( 
(m+ n)r2

\bigr) 
flops. If r is small,

the computation is dominated by the matrix multiplication operations involving A.

5. Numerical experiments. In this section we provide numerical experiments
on synthetic data sets and real world text and image data sets. All methods were
implemented in MATLAB (version R2017a), and the experiments were conducted on
a server with two Intel(R) Xeon(R) CPU ES-2680 v3 CPUs and 377GB RAM. We
compared the following algorithms for NMF.

1. (ARk) ARkNLS with k = 3, the method proposed in this paper.
2. (HALS) Cichocki and Phan's hierarchical alternating least squares algorithm [7].
3. (BPP) Kim and Park's block principal pivoting method [24].
4. (RTRI) Liu and Zhou's rank-2 residual iteration method [37].

Prior work [27, 7, 9] has shown that HALS and BPP are two of the most effective
methods for NMF. RTRI is an algorithm with a similar style as our proposed method
and thus serves as good benchmark as well. We implemented the RTRI algorithm
and utilized the BPP and HALS implementation provided by Kim, He, and Park [27].
In all our experiments A \in \BbbR m\times n

+ refers to the input matrix with r being the approx-
imation rank.

5.1. Comparison criteria: Computational complexity. The computational
cost of each iteration for various methods is shown in Table 5.1. Here, each iteration
refers to updating all entries of U and V once. The algorithms we compared use the
BCD framework for NMF, ranging from 2 blocks (where each block is the entire matrix
U or V ) in the case of BPP to 2r blocks (where each block is a column of U or V ) in
the case of HALS. ARk and RTRI lie somewhere in between these two extremes. It is
important to note that the underlying problems for one complete updating of U or V
in these algorithms are very different. For example, updating every column of U once
in HALS is not equivalent to updating the entire U all at once in BPP and may not
even be related. This is easy to see since updating U in BPP requires an NLS solution
but we do not reach an NLS solution by updating each column of U once for the entire
U as in HALS. In addition, the outer iteration for the larger problem of NMF can
take very different paths to the solution, and the total number of iterations would
depend on the problems involved in the inner iteration. For the above reasons, any
comparison across the algorithms based on flop count of each iteration for updating
the matrix U or V once would be meaningless. However, a fair comparison of speed
across the NMF algorithms can come from measuring the objective function decrease
(or other relevant measures) over time. Nevertheless, we provide the complexity of
updating one factor (i.e., U or V ) once for each algorithm in Table 5.1. The purpose
of the table is to give the reader a sense of the work performed in each iteration of
each method, but it will not be meaningful to compare the flop counts per iteration
across the methods.

The complexity in Table 5.1 for each method is divided into 3 terms. The first
term is interaction with input A. The second is the computation of the Gramian of
U or V . The final term is the update rule for a column/row of U or V and is often
simple in nature. In BPP, the update rule is for the entire matrix U or V and can
be exponential in the worst case. However, the algorithm is often fast in practize
and is a standard benchmark for many NMF applications [27]. In RTRI, we need to
apply the input matrix twice to every column of U and V , resulting in the leading
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Table 5.1
Computational complexity of updating U \in \BbbR m\times r and V \in \BbbR n\times r once.

Algorithm FLOPs
ARk 4mnr + 4(m+ n)r2 +O ((m+ n)r)
HALS 4mnr + 4(m+ n)r2 +O ((m+ n)r)
BPP 4mnr + 4(m+ n)r2 +O(2r)
RTRI 8mnr + 8(m+ n)r2 +O ((m+ n)r)

Table 5.2
Data sets.

Data set Size Sparsity
TDT2 36,771 \times 9,394 99.65\%
Reuters 18,933 \times 8,293 99.75\%

20Newsgroups 26,214 \times 18,846 99.66\%
ORL 10,304 \times 400 0.01\%

Facescrub 9,216 \times 22,631 0.39\%
YaleB 10,000 \times 2,432 2.70\%

Caltech256 9,216 \times 30,607 1.00\%

term of 8mnr. When running NMF on large scale data it is often the leading term,
application of the input matrix A, which is the bottleneck computation.

5.2. Data sets. We use seven real world data sets in our experiments: three
sparse text data sets1 (TDT2, Reuters21578, and 20Newsgroups) and four dense im-
age data sets (ORL, Facescrub, YaleB, and Caltech256). A summary of their charac-
teristics can be found in Table 5.2. The text data is represented as a term-document
matrix, and images are represented as a vector of pixels. In addition, we test the
methods on various synthetic data sets as described later in subsection 5.5. Detailed
descriptions of the real world data sets are as follows:

1. TDT2: The National Institute of Standards and Technology Topic Detection
and Tracking corpus consists of news articles collected during 1998 and taken
from various sources including television programs, radio programs, and news
wires. The articles are classified into 96 categories. Documents appearing in
multiple categories are pruned leaving us with 9,394 documents and 30 classes
of documents in total.

2. Reuters: We use the ModApte version of the Reuters21578 corpus. It consists
of articles appearing in the 1987 Reuters news wire. Retaining documents
with only single labels leaves us with 8,293 documents in 65 categories.

3. 20Newsgroups: It is a collection of newsgroup documents partitioned across
20 different categories with 18,846 documents.

4. ORL2: AT\&T Laboratories Cambridge collected 400 facial images of 40 differ-
ent people with different expressions and postures. Each image has 92\times 112
pixels resulting in matrix of dimension 10, 304\times 400.

5. Facescrub: This database contains 106,863 photos of 530 celebrities, 265
whom are male and 265 female [40]. The initial images that make up this
data set were procured using Google Image Search. Subsequently, they were
processed using the Haarcascade-based face detector from OpenCV 2.4.7 on
the images to obtain a set of faces for each celebrity name, with the require-
ment that a face must be at least 96 \times 96 pixels. In our experiment, we use
photos from 256 male celebrities and scale the images to 96\times 96 pixels.

1The text data sets are available at http://www.cad.zju.edu.cn/home/dengcai/.
2https://github.com/fengbingchun/NN Test.
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6. YaleB3: 5,760 single light source images of 10 subjects were collected under
576 viewing conditions. The images have normal, sleepy, sad, and surprising
expressions. A subset of 38 persons with 64 images per people, i.e., 2,432
images, is used in this paper. We scale the images to 100\times 100 pixels each.

7. Caltech2564: This corpus is a set of 256 object categories containing a total
of 30,607 images. They were collected by choosing a set of object categories,
downloading examples from Google Images, and then manually screening out
all images that did not fit the category. Images are scaled to 96 \times 96 pixels
in our experiments.

We also use synthetic data for additional benchmarks. The details of these sets
can be found in subsections 5.3 and 5.5.3.

5.3. ARkNLS with \bfitk = 2 versus \bfitk = 3. As stated earlier, although ARkNLS
can be developed for any integer k, we focus on the choices of k = 2 and k = 3 for
efficiency of closed-form solutions. We test the cases of ARkNLS for k = 2 and k = 3
on synthetic low-rank matrices. The synthetic matrices are created as A = WHT +N
where W \in \BbbR m\times r

+ and H \in \BbbR n\times r
+ are random nonnegative matrices where the columns

of W have unit norm and N \in \BbbR m\times n is a random Gaussian matrix with 0 mean and
0.03 standard deviation. We ensure that A is nonnegative by replacing negative values
with 0. We fix the number of columns n to 5,000 and vary the number of rows m. We
run ARkNLS for 300 iterations of updating every column of U and V . The results of
these experiments can be seen in Figure 5.1.
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(a) Varying r for m = 7, 000.
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(c) m = 7, 000 and r = 45.

Fig. 5.1. Synthetic experiments for selecting k for ARk. Both k = 2 and k = 3 perform
similarly with k = 3 obtaining marginally better approximations in slightly longer time.

From Figure 5.1(a) and (b) we can see that the choices of k do not affect the
running time and convergence characteristics of ARkNLS too much. Relative residual
is measured as \| A - UV T \| F /\| A\| F . We show a particular case of the runs in 5.1(c).
Here we can see that k = 3 achieves slightly higher accuracy and runs at about
the same time. This trend is true for all configurations of m and r. This makes
sense intuitively since k = 3 updates one more column per block than k = 2. The
major computational bottleneck in both variations comes from matrix multiplications
involving A (see subsection 4.4) and does not vary with k. Hence we focus only on
the k = 3 setting for the rest of our experiments.

5.4. Choice of NLS solvers (ARkNLS versus BPP). Our next experiment
compares the choice of the NLS solver used in the k = 3 blocks generated in our
algorithm. BPP is a general NLS solver and is used as a baseline to measure ARkNLS

3http://vision.ucsd.edu/\sim iskwak/ExtYaleDatabase/Yale\%20Face\%20Database.htm.
4http://www.vision.caltech.edu/Image Datasets/Caltech256/.
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performance. We repeat the experiments used in subsection 5.3 with using both
methods as the NLS solver. The results can be seen in Figure 5.2. Since both ARkNLS
and BPP are exact NLS solvers they both result in the same solution. Therefore the
only difference is in execution time where ARkNLS is very effective. ARkNLS is
consistently 3\times faster than BPP. This is expected since BPP is an iterative method
whereas ARkNLS finds a closed-form solution for each subproblem. With k = 3,
BPP's advantage of moving multiple variables in and out of the active set is lost. This
choice of k also harms BPP's convergence behavior since we are no longer solving a
2 block BCD problem but a multiblock one, making it more difficult to find a good
solution in terms of residual as seen in other experiments (see subsection 5.5).
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(a) Varying r for m = 7, 000.
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(c) m = 7, 000 and r = 45.

Fig. 5.2. Synthetic experiments for selecting the NLS solver used for each k = 3 block. ARk is
consistently 3\times faster than BPP for a variety of inputs.

5.5. Experiments on synthetic data. The convergence behavior of the differ-
ent NMF algorithms is compared on synthetic matrices in the following experiments.

5.5.1. Experiments on dense synthetic data. The dense synthetic matrices
are created in the same manner as described in subsection 5.3. Defining a stopping
criteria for iterative algorithms like NMF is often a tricky task. Many options ex-
ist [27], but for comparison purposes in this section we run all algorithms for 100
iterations and observe their convergence behavior. We ran our tests with n = 15, 000
and vary m from 5,000 to 30,000 in increments of 5,000. r is fixed as one of 30,60,
and 90. We split the input matrices into the Short-Fat (m < n), Square (m = n),
and Tall-Skinny (m > n) cases. Only particular instances of each case are shown
in Figures 5.3 to 5.5 with the results being similar in the other experiments.

(a) Residual versus iterations.

0 200 400 600 800

Time (s)

0.11

0.115

0.12

0.125

0.13

0.135

0.14

R
e
la

ti
v
e
 E

rr
o
r

BPP

ARk

HALS

RTRI

0 20 40
0.11

0.12

0.13

0.14

(b) Residual versus time.

0 20 40 60 80 100

Time (s)

0.11

0.115

0.12

0.125

0.13

0.135

R
e
la

ti
v
e
 E

rr
o
r

BPP

ARk

(c) Running ARk for 300 it-
erations.

Fig. 5.3. Short-Fat case (m < n): A \in \BbbR 10,000\times 15,000
+ with r = 60. BPP performs the best

in terms of residual with ARk being next best and reaching similar residuals much faster than the
other methods.
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(a) Residual versus iterations. (b) Residual versus time.
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Fig. 5.4. Square case (m = n): A \in \BbbR 15,000\times 15,000
+ with r = 60. BPP performs the best in

terms of residual with ARk being next best and reaching similar residuals much faster than the other
methods.
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(a) Residual versus iterations. (b) Residual versus time.
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Fig. 5.5. Tall-Skinny case (m > n): A \in \BbbR 25,000\times 10,000
+ with r = 60. BPP performs the best

in terms of residual with ARk being next best and reaching similar residuals much faster than the
other methods.

Figure 5.3 shows the Short-Fat case with m = 10, 000 and r = 60. BPP achieves
the lowest residual while HALS, RTRI, and ARk perform slightly worse as seen in
Figure 5.3(a). Figure 5.3(b) shows the convergence with respect to time. All algo-
rithms converge very quickly, and BPP and ARk show the fastest drops in residual.
It can be clearly seen that ARk is the most efficient of the algorithms, often complet-
ing over half of its iterations before the others complete their first iteration. From
Figure 5.3(a) and (b) it looks like ARk might reach a lower residual if we allow it to
run for a few more iterations and so allow it to run till 300 iterations in Figure 5.3(c)
and compare it to BPP. BPP is still better, but the difference is marginal.

Figures 5.4 and 5.5 show the Square and Tall-Skinny cases, respectively. The
observations from the Short-Fat case can be carried forward to these as well. Similar
results were obtained for the other choices of r and m, and we omit them from this
section for ease of presentation.

5.5.2. Experiments with various ranks. We test the effect of increasing the
approximation rank (r) on the different algorithms. First we check the approxima-
tion quality of ARk when the r is increased in Figure 5.6(a) on a synthetic matrix
A \in \BbbR 20,000\times 15,000

+ with a low rank of 150. We can see that ARk achieves a good
approximation even at r = 10 and progressively gets better when r is increased. Next
we see the effects on running time when r increases. Figure 5.6(b) shows the time
per iteration, that is, the time taken to update all columns of U and V once, of the
different algorithms as r increases on a matrix with m = 20, 000 and n = 15, 000. All

D
ow

nl
oa

de
d 

01
/0

6/
24

 to
 7

3.
21

0.
18

7.
80

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ARkNLS FOR NONNEGATIVE MATRIX FACTORIZATION 1473

0 20 40 60 80 100

Rank (r)

0.0665

0.067

0.0675

0.068

0.0685

0.069

0.0695

0.07

0.0705
F

in
a
l 
R

e
la

ti
v
e
 E

rr
o
r

(a) ARk approximation.

10 20 30 60 90

Rank (r)

10
-1

10
0

10
1

10
2

T
im

e
 p

e
r 

it
e
ra

ti
o
n
 (

s
)

BPP

ARk

HALS

RTRI

(b) Time per iteration.

Fig. 5.6. Rank sweep experiments on A \in \BbbR 20,000\times 15,000
+ . ARk achieves better approximations

with increased r as expected and maintains its computational efficiency over the other methods.
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(a) Sparsity 0.01.
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(b) Sparsity 0.05.
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(c) Sparsity 0.1.
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(d) Sparsity 0.15.

Fig. 5.7. Sparse case: A \in \BbbR 20,000\times 15,000
+ with varying sparsities. ARk achieves the lowest

residual errors in the shortest computational time.

algorithms show a moderate increase in time as r increases. ARk maintains about 10
times faster computational speed over the other algorithms for all r.

5.5.3. Experiments with sparse synthetic data. The sparse synthetic ma-
trices are created in the following manner. We first generate a dense low-rank non-
negative matrix L \in \BbbR m\times n

+ as shown in subsection 5.3. Then we generate a uniform
random sparse matrixX \in \BbbR m\times n

+ with the desired sparsity \rho and elementwise multiply
it with L to obtain our synthetic matrix A = X \ast L. Here \ast denotes the elementwise
product of matrices. It must be noted that this matrix is not truly low-rank due to
the elementwise product.

Figure 5.7 shows the performance of our four algorithms on a sparse 20, 000 \times 
15, 000 matrix with r = 60 and varying sparsity. We can see that BPP, ARk, and
HALS achieve similar approximation errors while RTRI produces larger residual val-
ues. ARk is able to achieve the best relative error within the shortest time. Its relative
speedup over the other algorithms is less than the dense case, but it still is faster by
a factor of 2--3 compared to the other methods.

5.6. Experiments on real world data. We run the four algorithms on the real
world data described in Table 5.2. We test a suite of approximation rank r, varying
from 60 to 150 in increments of 30. In these experiments we want to measure how
the algorithms converge over time and use an upper bound on time as the stopping
criteria. The maximum time is selected as follows. From Figure 5.5 we can see that
generally BPP achieves the lowest residual after 100 iterations. We run BPP for 100
iterations on all the data sets which then select the time needed to reach within 1\%,
5\%, 10\%, or 15\% of that final error. This approximation is chosen to keep the overall
running time of each algorithm under 15 minutes. For most the data sets we are able
to approximate up to 1\% of error except for some instances of the larger Caltech and
Facescrub runs. The results of these are displayed in Table 5.3. The table contains the
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Fig. 5.8. Some typical convergence plots for world data. ARk is able to achieve good approxi-
mation error in a fraction of the time taken by the other methods.

final residual of all the algorithms averaged over 5 runs with different initializations.
AE is the approximation percentage of the error with respect to running BPP for 100
iterations.

We can observe that ARk is the best performing algorithm followed by BPP,
HALS, and RTRI in that order. RTRI performs particularly poorly for the sparse
inputs. The main reason for ARk performing well on these experiments is its compu-
tational efficiency. ARk is able to perform thousands of iterations in the same time
as it takes BPP or HALS to perform tens. This can be clearly seen in Figure 5.8
where we can see that ARk has converged very quickly and before BPP can complete
a single iteration. It is true that given enough time the other algorithms, especially
BPP, might find a better solution, but this could be prohibitively expensive espe-
cially for larger values r. From these experiments we can conclude that ARk strikes
a good balance between accuracy and computational efficiency and discovers good
approximations much faster than the the other methods compared in this work.

6. Concluding remarks. In this paper, we have established the recursive for-
mula for the solutions of the rank-k NLS and developed the ARkNLS framework for
NMF based on this recursive formula. We have further studied ARkNLS with k = 3
which builds upon the rank-3 residue iteration for NLS that updates two more col-
umns than HALS per updating step. We have also introduced a new strategy that
efficiently overcomes the potential singularity problem within the context of NMF
computation. Extensive numerical comparisons using real data sets demonstrate that
our new algorithm ARkNLS(k=3) provides state-of-the-art performance in terms of
computational accuracy and CPU time.

Appendix A. Proof of Corollary 3.3.

Proof. Let

\widehat b = b - g3g
T
3

\| g3\| 2
b, \widehat g1 = g1  - 

g3g
T
3

\| g3\| 2
g1, \widehat g2 = g2  - 

g3g
T
3

\| g3\| 2
g2.

A simple calculation yields that

\widehat gT
2 \widehat g1 =

\biggl( 
g2  - 

gT
3 g2

\| g3\| 2
g3

\biggr) T \biggl( 
g1  - 

gT
3 g1

\| g3\| 2
g3

\biggr) 
=

(gT
2 g1)\| g3\| 2  - (gT

3 g2)(g
T
3 g1)

\| g3\| 2
,(A.1)

\| \widehat g1\| 2 =

\biggl( 
g1  - 

gT
3 g1

\| g3\| 2
g3

\biggr) T \biggl( 
g1  - 

gT
3 g1

\| g3\| 2
g3

\biggr) 
=

\| g1\| 2\| g3\| 2  - (gT
3 g1)

2

\| g3\| 2
,(A.2)
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\| \widehat g2\| 2 =

\biggl( 
g2  - 

gT
3 g2

\| g3\| 2
g3

\biggr) T \biggl( 
g2  - 

gT
3 g2

\| g3\| 2
g3

\biggr) 
=

\| g2\| 2\| g3\| 2  - (gT
3 g2)

2

\| g3\| 2
,(A.3)

\widehat bT \widehat g2 =

\biggl( 
b - gT

3 b

\| g3\| 2
g3

\biggr) T \biggl( 
g2  - 

gT
3 g2

\| g3\| 2
g3

\biggr) 
=

(bTg2)\| g3\| 2  - (gT
3 g2)(g

T
3 b)

\| g3\| 2
,(A.4)

\widehat bT \widehat g1 =

\biggl( 
b - gT

3 b

\| g3\| 2
g3

\biggr) T \biggl( 
g1  - 

gT
3 g1

\| g3\| 2
g3

\biggr) 
=

(bTg1)\| g3\| 2  - (gT
3 g1)(g

T
3 b)

\| g3\| 2
.(A.5)

Let

s(
\bigl[ \widehat g1 \widehat g2

\bigr] 
, \widehat b) = \Biggl[ s1(

\bigl[ \widehat g1 \widehat g2

\bigr] 
, \widehat b)

s2(
\bigl[ \widehat g1 \widehat g2

\bigr] 
, \widehat b)

\Biggr] 
be the solution to the optimization problem

min
y1,y2\geq 0

\| y1\widehat g1 + y2\widehat g2  - \widehat b\| .
Then from (A.1)--(A.5) and Corollary 3.2, we have

s2
\Bigl( \bigl[ \widehat \bfg 1 \widehat \bfg 2

\bigr] 
, \widehat \bfb \Bigr) 

=
1

\| \widehat \bfg 2\| 2

\Biggl[ \widehat \bfb T \widehat \bfg 2  - \widehat \bfg T
2 \widehat \bfg 1

\Biggl[ 
\| \widehat \bfg 2\| 2\widehat \bfb T \widehat \bfg 1  - \widehat \bfb T \widehat \bfg 2 \cdot \widehat \bfg T

2 \widehat \bfg 1

\| \widehat \bfg 1\| 2\| \widehat \bfg 2\| 2  - (\widehat \bfg T
1 \widehat \bfg 2)2

\Biggr] 
+

\Biggr] 
+

=

\biggl[ 
\bfb T\bfg 2 \cdot \| \bfg 3\| 2  - \bfb T\bfg 3 \cdot \bfg T

3 \bfg 2

\| \bfg 2\| 2\| \bfg 3\| 2  - (\bfg T
3 \bfg 2)2

 - \bfg T
2 \bfg 1 \cdot \| \bfg 3\| 2  - \bfg T

3 \bfg 2 \cdot \bfg T
3 \bfg 1

\| \bfg 2\| 2\| \bfg 3\| 2  - (\bfg T
3 \bfg 2)2

\bigl[ det([\bfb ,\bfg 2,\bfg 3]
TG)

det(GTG)

\bigr] 
+

\biggr] 
+

= p.

Moreover,

s1
\Bigl( \bigl[ \widehat \bfg 1 \widehat \bfg 2

\bigr] 
, \widehat \bfb \Bigr) 

=

\biggl[ 
\bfb T\bfg 1 \cdot \| \bfg 3\| 2  - \bfb T\bfg 3 \cdot \bfg T

3 \bfg 1

\| \bfg 1\| 2\| \bfg 3\| 2  - (\bfg T
3 \bfg 1)2

 - \bfg T
2 \bfg 1 \cdot \| \bfg 3\| 2  - \bfg T

3 \bfg 2 \cdot \bfg T
3 \bfg 1

\| \bfg 1\| 2\| \bfg 3\| 2  - (\bfg T
3 \bfg 1)2

s2(
\bigl[ \widehat \bfg 1 \widehat \bfg 2

\bigr] 
, \widehat \bfb )\biggr] 

+

= \widetilde p.
Therefore, according to Theorem 3.1 and Corollary 3.2, the solution to the optimiza-
tion problem

min
\{ y1,y2,y3\} \geq 0

\| y1g1 + y2g2 + y3g3  - b\| 

is

y\ast 3 =
1

\| g3\| 2
\bigl[ 
gT
3

\bigl( 
b - [g1,g2] \cdot s(

\bigl[ \widehat g1 \widehat g2

\bigr] 
, \widehat b)\bigr) \bigr] 

+

=
1

\| g3\| 2
\bigl[ 
gT
3 b - gT

3 g1 \cdot \widetilde p - gT
3 g2 \cdot p

\bigr] 
+

with s1([ \widehat g1 \widehat g2 ], \widehat b) = \widetilde p, s2([ \widehat g1 \widehat g2 ], \widehat b) = p, and\left\{                 

y\ast 
2 = s2

\Bigl( \Bigl[ 
\bfg 1 \bfg 2

\Bigr] 
,\bfb  - \bfg 3y

\ast 
3

\Bigr) 
= 1

\| \bfg 2\| 2

\biggl[ 
(\bfb  - \bfg 3y

\ast 
3)

T\bfg 2  - \bfg T
2 \bfg 1

\Bigl[ 
\| \bfg 2\| 2(\bfb  - \bfg 3y

\ast 
3 )T \bfg 1 - (\bfb  - \bfg 3y

\ast 
3 )T \bfg 2\cdot \bfg T

2 \bfg 1

\| \bfg 1\| 2\| \bfg 2\| 2 - (\bfg T
2 \bfg 1)2

\Bigr] 
+

\biggr] 
+

= 1
\| \bfg 2\| 2

\Bigl[ 
(\bfb  - \bfg 3y

\ast 
3)

T\bfg 2  - \bfg T
2 \bfg 1

\bigl[ (\bfb T \bfg 1\| \bfg 2\| 2 - \bfb T \bfg 2\cdot \bfg T
2 \bfg 1) - (\bfg T

3 \bfg 1\| \bfg 2\| 2 - \bfg T
3 \bfg 2\cdot \bfg T

2 \bfg 1)y
\ast 
3

\| \bfg 1\| 2\| \bfg 2\| 2 - (\bfg T
2 \bfg 1)2

\bigr] 
+

\Bigr] 
+

y\ast 
1 = s1

\Bigl( \Bigl[ 
\bfg 1 \bfg 2

\Bigr] 
,\bfb  - \bfg 3y

\ast 
3

\Bigr) 
= 1

\| \bfg 1\| 2
[(\bfb  - \bfg 3y

\ast 
3)

T\bfg 1  - (\bfg T
2 \bfg 1)y

\ast 
2 ]+.

Hence, Corollary 3.3 is proved.
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